

1/v

2001

Abstract

The effective velocity and temperature for the neutron beam of the SNU-KAERI PGAA facility are determined by measuring the prompt γ -ray spectra for thin and thick ¹⁰B samples. Both the neutron flux and the γ -ray detection efficiency were set at minimum due to high neutron capture rate for the thick sample. The effective absorption cross section of ¹⁰B is obtained from the ratio of ¹⁰B peak count rates in both the spectra. The effective velocity and temperature of the neutron beam determined from the effective cross section are 2117 ± 21 m/s and 269 ± 5 K, respectively. These results are consistent with the values calculated from the neutron spectrum in 4%.

1.

PGAA) 2001

가

. PGAA

(Prompt Gamma Activation Analysis,

H, B, Sm, Cd

(Boron Neutron Capture Therapy)

5

"SNU-KAERI PGAA" , pyrolytic graphite crystal [1-3], . [4], graphite crystal [5] . PGAA 가 Lindstrom

[6]. 1/v "black absorber" $^{10}\mathbf{B}$ SNU-KAERI PGAA •

2.

 $\left\langle \sigma_{a} \right\rangle = \frac{\int_{0}^{\infty} \sigma_{a}(E)\phi(E)dE}{\int_{0}^{\infty} \phi(E)dE}$ (1) 가 *E* φ(E) . , $\sigma_a(E)$. SNU-KAERI 가 6 ,

 $\langle \sigma_a \rangle \cong \sum_{n=1}^6 w_n \sigma_a(E_n)$ (2) Wn n .

. Lindstrom

 C_{thin}

[6].

 $^{10}\mathbf{B}$

 $C_{thin} = \varepsilon \Gamma \int_0^\infty \sigma_a(E) \phi(E) NV dE = \varepsilon \Gamma A D \phi_D \left\langle \sigma_a \right\rangle$ (3) ε ¹⁰B 가 , Γ . 478 keV $^{10}\mathbf{B}$, D^{10} B 478 keV , A , NV, ϕ_D "black absorber" • .

가 가 ,

$$C_{thick} = \varepsilon \Gamma A' \phi_D \tag{4}$$

$$A' \qquad 7!$$

$$45^\circ \qquad A \cos 45^\circ 7! \qquad A' \phi_D$$

 $^{10}\mathbf{B}$

$$\left\langle \sigma \right\rangle_{meas} = \frac{A'}{A} \frac{1}{D} \frac{C_{thin}}{C_{thick}} \tag{5}$$

.

•

$$\left\langle v\right\rangle = v_0 \,\frac{\sigma_{a0}}{\left\langle \sigma_a \right\rangle}\,,\tag{6}$$

$$\left\langle \lambda \right\rangle = \frac{h}{m \left\langle \nu \right\rangle},\tag{7}$$

2200 m/s, σ_{a0} v_0 . v_0 , h Planck , *m* .

3.

SNU-KAERI	PGAA	1.		ST1
	,	(polarized neutron sp	pectrometer)	
	ST1	가	20', 30' ful	l open
				full open
				20'
30'	. ST1		pyrolytic graphi	te crystal
Bragg	가 90°	collimator,		

90°

					90°
HPGe		sto	opper		
. HPGe		25.5 cm			
HPGe ,	,	MCB(Multi Chann	el Buffer)		
Gamma-Vision	01	n-line			
	NIST(Nati	onal Institute of Stand	lards and Te	chnology, U	JSA)
	2.5 cm		가	$^{10}\mathbf{B}$	Si
borophosphosilicate glass	, ¹⁰ B	neutron depth	profiling		
$5 \times 10^{16} / \text{cm}^2$.	$^{10}\mathbf{B}$	가 1.3 mm	$^{10}\mathbf{B}$	4.5wt%	

Fig. 1. Schematic diagram of the SNU-KAERI PGAA facility.

 4.
 7!
 7!
 $1^{0}B$ 478 keV

 . ^{10}B 478 keV
 7!
 Doppler-broadening

 . ^{10}B 478 keV
 7!
 Doppler-broadening

 . ^{10}B 475 keV
 ^{10}B background 7!
 ,

2

Fig. 2. Measured spectra for thick and thin boron samples.

Table 1. Countings of ¹⁰B peaks for thin(Borophosphosilicate glass on Si) and thick(¹⁰B-Al alloy) samples.

1000

Sample	Live time [sec]	Peak area [counts]	Count rate [cps]
Borophosphosilicate Glass on Si	75000	38322 ± 238	0.5110 ± 0.003
¹⁰ B-Al alloy	3600	$6.394 \times 10^{6} \pm 2578$	1776.1 ± 0.7

one by using the measured neutron spectrum and the energy-dependent cross sections of ${}^{10}B$. $<\sigma>$ [barn] <v> [m/s] $<\lambda>$ [Å] <T> [K]

Table 2. Comparison of the measured effective velocity from the results in Table 1 and the calculated

	< σ > [barn]	<v> [m/s]</v>	<λ>[Å]	<t>[K]</t>
Measured	3987.2 ± 39.9	2117.2 ± 21.2	1.87 ± 0.02	268.6 ± 5.4
Calculated	3850.6	2192.2	1.80	288

- S.H. Byun, H.D. Choi, B.J. Jun and M.S. Kim, "Extraction of Polychromatic Thermal Neutrons by Bragg Diffraction to Use for Prompt Gamma Neutron Activation Analysis", Proceedings of 10th International Symposium on Capture Gamma-Ray Spectroscopy and Related Topics, 731 USA (2000).
- S.H. Byun and H.D. Choi, "Design Features for a Prompt Gamma Neutron Activation Analysis System at Hanaro", J. Radioanal. Nucl. Chem., 244, 413 (2000).
- H.D. Choi, G.M. Sun, S.H. Byun, C.S. Kang and N.B. Kim, "Progress and Plan of the PGNAA facility at Hanaro", Appendix 3, Summary Report of the Second Research Co-ordination Meeting, INDC(NDS)-424, June 2001, IAEA Nuclear Data Section, Vienna, Austria.
- R.M. Lindstrom, "Neutron Beam Characterization", Appendix 3, Summary Report of the Second Research Co-ordination Meeting, INDC(NDS)-424, June 2001, IAEA Nuclear Data Section, Vienna, Austria.
- 7. Evaluated Nuclear Data Files, 1998, http://www.nndc.bnl.gov/nndc/endf/.