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Abstract 

A neuro-fuzzy inference system combined with the wavelet denoising, PCA (principal component analysis) 
and SPRT (sequential probability ratio test) methods has been developed to monitor the relevant sensor using the 
information of other sensors. The parameters of the neuro-fuzzy inference system which estimates the relevant 
sensor signal are optimized by a genetic algorithm and a least-squares algorithm. The wavelet denoising 
technique was applied to remove noise components in input signals into the neuro-fuzzy system. By reducing the 
dimension of an input space into the neuro-fuzzy system without losing a significant amount of information, the 
PCA was used to reduce the time necessary to train the neuro-fuzzy system, simplify the structure of the neuro-
fuzzy inference system and also, make easy the selection of the input signals into the neuro-fuzzy system. By 
using the residual signals between the estimated signals and the measured signals, the SPRT is applied to detect 
whether the sensors are degraded or not. The proposed sensor-monitoring algorithm was verified through 
applications to the pressurizer water level, the pressurizer pressure, and the hot-leg temperature sensors in 
pressurized water reactors. 

1.   Introduction 

In nuclear power plants, sensor signals from many different measurement locations are used in control and 
safety critical systems and for plant state identification. Therefore, these signals must be validated to increase the 
reliability of operator decisions and automatic plant operations. Sensor validation can be done through accurate 
mathematical modeling and computer coding of a process which are usually very difficult. Recently, a lot of 
diagnostic techniques of sensors using neural networks and fuzzy inference methods have been developed. After 
the neuro-fuzzy inference system for sensor monitoring is trained beforehand, the neuro-fuzzy system monitors 
sensors on-line. By using these on-line condition-monitoring systems, the nuclear power plant safety is increased 
and also the plant availability can be improved considerably. The unnecessary and unexpected plant shutdown 
can be prevented and reduced when their failures are detected early. Also, plant outage times for repairing can be 
minimized and maintenance measures and schedules can be planned optimally while any proceeding of incipient 
failures is under control of the monitoring system.  

The studies on sensor monitoring using artificial intelligence in nuclear power plants was started in the late 
80's by Upadhyaya, et. al. [1,2], was also conducted by Singer, et. al. [3], Hines and Uhrig, et. al. [4,5], and 
Fantoni, et. al [6]. Reifman [7] surveyed artificial intelligence methods for detection and identification of 
component faults. Through training, the neuro-fuzzy systems have been known to be very good at phenomenal 
nonlinear function approximation and pattern recognition, especially when expert diagnostic knowledge and the 
prior relation of fault symptom model are not clear.  

In this work, a wavelet denoising and a principal component analysis (PCA) for input signal preprocessing, 
a neuro-fuzzy system for signal estimation, and a sequential probability ratio test (SPRT) for statistical fault 
decision are combined for a sensor monitoring and the structure of these combined processes is shown in Fig. 1 
[8]. The direct use of transient signals in the time domain to the input of a neuro-fuzzy inference system can be 
difficult since the subtle differences may occur between different transients. Therefore, it is necessary to 
preprocess the transient signals. A wavelet denoising technique is applied to remove noise components in the 
input signals on the neuro-fuzzy inference system. One of characteristics of wavelets is able to analyze a 
localized area of a larger signal [9]. The dimension of the input signals to a neuro-fuzzy inference system had 
better be reduced to save the time necessary to train the neuro-fuzzy inference system. Principal component 
analysis (PCA) [10,11] is used to reduce the dimension of an input space without losing a significant amount of 
information. This method transforms the input space into an orthogonal space. Also, the PCA method makes easy 
the selection of the input to the neuro-fuzzy inference system. By using the input signals preprocessed by the 
wavelet denoising technique and the principal component analysis, a neuro-fuzzy inference system estimates the 
relevant signals. The neuro-fuzzy system parameters such as the membership functions and the connectives 
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between layers in a neuro-fuzzy inference system are optimized by a genetic algorithm and a least-squares 
algorithm. 

An important problem in sensor monitoring is whether a sensor is decided to be degraded or not after only 
one abnormal observation. It is sure that several measurements can give a reliable result. At every new sample, a 
new mean and a new variance may be computed and then, these quantities may be used to check if the sensor is 
degraded or not. However, this procedure requires too many samples to obtain a meaningful mean and a 
meaningful variance and also, during the acquisition of the samples, a significant degradation of the process 
monitored may occur. Therefore, in this work the sequential probability ratio test (SPRT) [12] was used. The 
method can detect a failure using the degree of degradation and the continuous behavior of the sensor, without 
having to calculate a new mean and a new variance at each sample. The signal estimated by the neuro-fuzzy 
inference system is compared with the measured signal, and then the SPRT monitors the sensor using the 
residuals. 

The proposed algorithm was applied to the sensor monitoring of the pressurizer (PRZR) water level and the 
PRZR pressure, and the hot-leg temperature in pressurized water reactors and was verified for abrupt and gradual 
bias degradations of these sensors and their noise degradation. 

 

2. Input Selection and Preprocessing 

It is difficult to select the number of input signals to be used and also appropriate input signals. In this work, 
all collected signals excluding an output come through a wavelet denoising block which noise will be removed in 
and then come through a PCA block which the dimension of an input space into the neuro-fuzzy inference system 
will be reduced in. The wavelet denoising and PCA methods will be briefly explained below.  

2.1 Wavelet Denoising 

In wavelet analysis, a signal is considered to consists of shifted and scaled versions of the original wavelet 
called mother wavelet, while in Fourier analysis, a signal is considered to be composed of sine waves of various 
frequencies. Since wavelets is able to analyze a localized area of a larger signal, a wavelet analysis is capable of 
revealing aspects of data that other signal analysis techniques can miss, aspects like trends, breakdown points, 
discontinuities in higher derivatives, and self-similarity [13]. Let a signal )(tf  be expressed as 

0)(anyfor)()( Vtftctf k
k

k ∈= ∑ ϕ , (1) 

where 0V  is the subspace of )(2 RL (the space of all functions with a well defined integral of the square of the 
modulus of the function) spanned by the scaling functions )(tkϕ  with all integers k  from minus infinity to 
infinity. The size of the subspace can generally be increased by changing the time scale of the scaling functions 
that is generated from the basic scaling function by scaling and translation expressed as )2(2)( 2/

, ktt jj
kj −= ϕϕ  

[9].  

By introducing the wavelet functions )(, tkjψ  that span the differences between the spaces spanned by the 

various scales of the scaling function )(, tkjϕ , the important features of a signal can be better described. If 

1)( +∈ jVtf  can be expressed at a scale of 1+j , when it is expressed at one scale lower resolution, wavelets are 
necessary for the detail not available at a scale of j  as follows: 
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Since )(, tkjϕ  and )(, tkjψ  are orthonormal, in Eq. (2) )(ka j and )(kd j  can be expressed as follows: 
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The low pass and high pass filtering of the input signal is thought as a moving average with the coefficients 
being the weights like Eqs. (3) and (4), respectively. Wavelet decomposition is to obtain low pass approximations 
and high pass details. An approximation is a low-resolution representation of the original signal, while a detail is 
the difference between two successive low-resolution representations of the original signal [14]. Thus, an 
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approximation contains the general trend of the original signal, while a detail contains the high frequency 
contents of the original signal. The detail and approximation of the original signal are obtained by passing it 
through a filter bank [9] which consists of low and high pass filters and by downsampling it. Downsampling 
means throwing away every second data point.  

Using wavelets to remove noise from a signal requires identifying which components contain the noise and 
then reconstructing the signal without these components. Thus, successive approximations become less and less 
noisy as more and more high-frequency information is filtered out of the signal. 

2.2 Principal Component Analysis (PCA) 

PCA is a method of preprocessing data to extract uncorrelated features from data. A PCA method involves 
linearly transforming the input space into an orthogonal space that can be chosen to be of lower dimension with 
minimal loss of information and is used to reduce the dimension of an input space into the neuro-fuzzy inference 
system. A lower dimensional input space will reduce the time necessary to train a neuro-fuzzy inference system.  

Given a signal vector x  of p  dimensions, [ ] T
pxxx !21=x , its true mean and covariance matrix are 

replaced with the sample mean m  and the sample covariance matrix S  because they are seldom known. The 
eigenvalues pλλλ ,,, 21 ! , and the corresponding orthonormal eigenvectors pppp ,,, 21 !  of the covariance 

matrix S  are calculated, and then the eigenvalues are arranged according to their magnitude, pλλλ ≥≥≥ !21 . 
The respective eigenvectors pppp ,,, 21 !  are called the principal components. The eigenvalues are proportional 
to the amount of variance (information) represented by the corresponding principal component. The 
transformation to the principal component space can be written as: 

Pxz T= , (5) 

where [ ]ppppP !21= .  

The feature vector z  can be transformed back into the original data vector x  without a loss of information 
as long as the number of features, m , is equal to the dimension of the original space, p . For pm < , some 
information is usually lost. The objective is to choose a small m  that does not lose much information. In this 
work, the feature vector which is calculated by Eq. (5) and has smaller dimension than the dimension of an 
original data space is used as inputs to the neuro-fuzzy inference system. 

 

3. Neuro-Fuzzy Inference System for Sensor Signal Estimation 

It is required that sensor signals should be estimated first to monitor sensors because the residuals between 
the estimated signals and the measured signals are used to decide whether sensors are degraded or not. In this 
work, sensor signals are estimated by a neuro-fuzzy inference system. A neuro-fuzzy inference system or an 
adaptive network-based fuzzy inference system (ANFIS) [15] consists of a fuzzy inference system and its 
neuronal training. Therefore, a fuzzy inference system and its training method will be briefly explained below.  

3.1 Fuzzy Inference System 

In a fuzzy inference system, the arbitrary i -th rule can be described using the first-order Sugeno-Takagi 
type [16] as follows: 

),,(isthen,isisIf 111 miiimmi xxfyAxANDANDAx !! , (6) 

where 
mxx ,,1 !  = input variables to the neuro-fuzzy inference system ( m  = number of input variables), 

imi AA ,,1 !  = antecedent membership functions of each input variable for the i -th rule ( i = 1, 2, ..., n ), 

iy  = output of the i -th rule, 

i

m

j
jijmi rxqxxf += ∑

=1
1 ),,( ! , (7) 

ijq = weighting value of the j -th input onto the i -th rule output, 

ir  = bias of the i -th output, 
n  = number of rules. 
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In this work, the Gaussian and sigmoid membership functions are used for each input variable and these 
membership functions are shown in Fig. 2. The sigmoid membership function is used for the maximum and 
minimum center values, ijc , in each input variable, jx , while the Gaussian membership function is used for 
other center values (refer to Fig. 2). It is shown in Fig. 2 as if five membership functions always exist for each 
input signal. However, the number of membership functions for each input is the same as the number of rules. If 
the number of rules is three, two sigmoid membership functions are used for the maximum and minimum center 
values and one Gaussian membership function is used for a middle center value. The output of an arbitrary i -th 
rule, if , consists of the first-order polynomial of inputs as given in Eq. (7). The output of a fuzzy inference 
system with n  rules is obtained by weighting the real values of consequent parts for all rules with the 
corresponding membership grade. The estimated output for sensor signal estimation is described as follows: 

i
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The neuro-fuzzy inference system for signal estimation is described in Fig. 3. 21, xx  and mx  are the input 
values to the fuzzy inference system and ijA  means the membership function of the j -th input for the i -th rule. 

The membership value for rule i , iw , means a compatibility grade between antecedent parts through 
multiplicative weight. If the Fig. 3 is explained from left to right, the signs Π  and Ν  mean multiplication and 
normalization which are expressed as Eqs. (10) and (9), respectively. The second sign Π  and the sign Σ  are 
expressed as Eq. (8). The sign Σ  means the summation of the input values.  

In the next subsection, this fuzzy inference system will be trained, which means that its rules and 
membership functions are automatically generated and tuned. 

3.2 Training of the Fuzzy Inference System 

The neuro-fuzzy inference system is optimized by adapting the antecedent parameters (membership function 
parameters) and consequent parameters (the polynomial coefficients of the consequent part) so that a specified 
objective function is minimized. The adaptation methods of most fuzzy inference systems rely on the back-
propagation algorithm which is generally used to recursively solve for parameter optimization. Since this 
conventional optimization algorithm is susceptible to getting stuck at local optima, the genetic algorithm is used 
in this work. However, the genetic algorithm requires much time if there are many parameters to be optimized. 
Therefore, the least-squares method that is a one-pass optimization method is combined for optimizing a part of 
the parameters. The genetic algorithm is used to optimize the antecedent parameters ijc  and ijs  (refer to Fig. 2), 

and the least-squares algorithm is used to solve the consequent parameters ijq  and ir  in Eq. (7) [17]. 

To use a genetic algorithm, a solution to a given problem must be represented as a chromosome which can 
be thought of as a point in the search space of candidate solutions and the chromosome contains the antecedent 
parameters  ijc and ijs  which describe the fuzzy membership functions. The genetic algorithm then creates a 
population of solutions (chromosomes) and applies genetic operators such as selection, crossover and mutation to 
evolve the solutions in order to find the best one. The genetic algorithms require a fitness function that assigns a 
score to each chromosome in the current population. The fitness of a chromosome (individual) depends on how 
well that chromosome solves the problem at hand [18,19]. In this work, a fitness function that evaluates the 
extent to which each individual is suitable for the given objectives such as small maximum error together with 
small total squared error and small number of inputs, was suggested as follows: 

( )332211exp EEEF µµµ −−−= , (11) 

where 1µ , 2µ  and 3µ  are the weighting coefficients, and 1E , 2E  and 3E  are overall sum of squared errors, 
maximum absolute error, and the number of inputs defined as follows: 
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)(ky  and )(ˆ ky  denote the measured signal and the estimated signal, respectively. 
In this work, to increase the efficiency of the conventional genetic algorithm, three schemes are applied to 

accomplish the following good performance of the genetic algorithm: (a) initial coarse tuning and final fine 
tuning by changing the bit number of chromosomes versus generation; (b) prevention of an initial premature 
convergence without reaching optimal solutions and the acceleration of a final convergence by using two 
different selection methods of the crossover site that is randomly selected anywhere in a chromosome or 
randomly selected between only parameters in a chromosome; (c) prevention of final drifting without 
convergence by a certain part of chromosomes with higher fitness surviving a subsequent generation (refer to 
[20] for details). 

If some parameters of the fuzzy inference system are fixed by the genetic algorithm, the resulting fuzzy 
inference system is equivalent to a series expansion of some basis functions. This basis function expansion is 
linear in its adjustable parameters. Therefore, we can use the least-squares method to determine the remaining 
parameters (consequent parameters). When a total of N  input-output pattern data for training are given, from Eq. 
(8) the consequent parameters are chosen such that the pattern data satisfy the following equation: 

Wqy = , (15) 

where y  is the measured output data, q  is the parameter vector consisting of the consequent parameters, and the 
matrix W  includes the input data defined as, respectively 
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The neuro-fuzzy inference outputs are represented by the nmN )1( +× -dimensional matrix W  and nm )1( + -
dimensional parameter vector q . In order to solve the parameter vector q  in Eq. (15), the matrix W  should be 
invertible but is not usually a square matrix. Therefore, we solve the vector using the pseudo-inverse as follows: 

( ) yWWWq TT 1−
= . (16) 

The least-squares method is a one-pass regression procedure and is consequently much faster than the back-
propagation algorithm and the genetic algorithm. 

 

4. Sensor Degradation Detection Using SPRT  

In order to monitor sensors, at every new sample, a new mean and a new variance may be computed to 
check if the sensor is degraded or not. However, this procedure requires too many samples to obtain a meaningful 
mean and a meaningful variance. During the acquisition of the samples, a significant degradation of the process 
monitored may occur. So a method is required to detect a failure using the degree of degradation and the 
continuous behavior of the sensor without having to calculate a new mean and a new variance at each sample. 
The SPRT (Sequential Probability Ratio Test) which is a statistical model developed by Wald in 1945 [12] 
satisfies these requirements.  

The objective of sensor degradation detection is to detect the degradation as soon as possible with a very 
small probability of making a wrong decision. In the application of sensor monitoring, the SPRT uses the residual 
(difference between the sensor measurement and the sensor estimate). Normally the residual signals are randomly 
distributed, so they are nearly uncorrelated and have a normal distribution ),,( iiki mP σε , where kε  is the 
residual signal at time k , and im  and iσ  are the mean and the standard deviation under hypothesis i , 
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respectively. The sensor degradation can be stated in terms of a change in the mean m  or a change in the 
variance 2σ . The basis for the SPRT lies in the likelihood ratio, which is given by 

)|(
)|(
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k

k
k ε

ε
γ = , (17) 

where 1H  represents a hypothesis that the sensor is degraded and 0H  represents a hypothesis that the sensor is 
normal. The ratio is updated at every sampling step. If a set of samples ix , n,,,i !21= , is collected with a 
density function P  describing each sample in the set, an overall likelihood ratio is given by 
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By taking the logarithm of the foregoing equation and replacing the probability density functions in terms of 
residuals, means and variances, the log likelihood ratio (LLR, nλ ) can be written as the following recurrent form: 
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This form is used for deriving the sensor drift detection algorithm. By using the foregoing equation, we can 
identify two kinds of sensor degradations, bias and noise degradations. If only the bias degradation is checked, 
Eq. (19) can be converted into the following equation by substituting 2

0
2
1 σσ =  and 00 =m  since normal residual 

signals usually have almost zero mean values: 
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Also, if only the noise degradation is checked, Eq. (19) can be converted into the following equation by 
substituting 010 == mm  since mean values do not change in this case: 
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For a normal sensor, the likelihood ratio would decrease and eventually reach a specified bound A , a 
smaller value than zero. When the ratio reaches this bound, the decision is made that the sensor is normal, and the 
ratio is initialized by setting it equal to zero. For a degraded sensor the ratio would increase and eventually reach 
a specified bound B , a larger value than zero. When the ratio is equal to B , the decision is made that the sensor 
is degraded. The decision boundaries A and B are chosen by a false alarm probability α  and a missed alarm 

probability β ; 






−
=

α
β

1
lnA  and 


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α
β1lnB . 

 

5. Applications  

The proposed algorithm was applied to the pressurizer (PRZR) water level, the PRZR pressure and the hot-
leg temperature. To verify the proposed algorithm, the input-output data were obtained for the load-decrease 
transients from the simulation of the MARS code [21] which is a unified version of COBRA/TF and 
RELAP5/MOD3. The input-output data consist of a total of 11 different signals from the primary and secondary 
sides of nuclear power plants (refer to Table 2) and also are standardized. In the three application cases (the 
PRZR water level, the PRZR pressure and the hot-leg temperature), one corresponding signal is used as an output 
and the remaining ten signals are used as inputs. Noise is added to all input and output data to model the real data 
of the nuclear power plant. The noise magnitude is proportional to the maximum variation maxσ  of each signal 
and the noise has a normal distribution ( )max005.0,0 σN . In all computer simulations that a denoising method is 
used, the wavelet denoising technique which uses a Daubechies wavelet function is applied to all measurement 
signals [22]. Each signal consists of a total of 700 discrete time points where its sampling period is 1 sec. The 
neuro-fuzzy inference system was trained using one fifth of all the given data in the training stage and was 
verified using the remaining data in the verification stage. The false alarm probability α  and the missed alarm 
probability β  are chosen as 0.0001 and 0.1, respectively. Therefore, the specific bounds, A and B , used to 
determine whether a sensor is degraded or not, are 3025.2−  and 1050.9 , respectively. And sensor tolerances are 
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5 percent mean value deviation between the maximum and minimum values of data (for degraded mean 1m ) and 
3 times standard deviation of the previous undegraded residuals (for degraded standard deviation 1σ ).  

In these three application cases, whether the denoising technique is used or not and whether the PCA 
method is used or not will be compared. Also, various types of output degradations (gradual bias degradation, 
noise degradation, abrupt bias degradation) will be tested and the cases one of only inputs (not output) is 
gradually degraded will be tested, too. Since the estimation errors are very small in spite of the small number of 
rules, the small number of rules (only two rules) is used, which can prevent an overfitting problem.  

Table 1 shows the information amount of each feature component. The first four feature components for all 
the application cases contain almost all information which the input signals have. Therefore these four feature 
components were used as inputs to the proposed neuro-fuzzy inference system. Table 2 shows the collected 
signals and their correlation coefficient matrix which informs the relationship of the signals. Table 3 shows the 
signal estimation results of each application case. The error level is important to decide whether sensors are 
degraded or not. If the principal component analysis is not applied, the input signals was chosen to have a total of 
5 signals so that the neuro-fuzzy inference system should maintain similar error levels (fitness values) 
irrespective of the PCA application. Note that four input signals were used if the PCA is applied. The application 
without PCA has one more input than that with PCA. In case that the principal component analysis is not applied, 
the chosen inputs are shown in Table 3 for the three application cases. These inputs were chosen through a 
correlation analysis and many computer simulations among the signals that have a close relationship with each 
output but have small dependence between chosen inputs so that the fitness value would be minimized. There is 
the small number of parameters to be optimized due to the relatively small numbers of inputs (4 or 5 inputs) and 
rules (2 rules). That means that there usually exists sufficient information in collected input-output data which 
can identify such a small number of the parameters. Therefore, there is no necessity for worrying about an 
overfitting problem. 

The maximum error and the standard deviation for the three application cases are almost the same for the 
training data set and the verification data set, which means that once the neuro-fuzzy inference system is trained 
for a data set, the neuro-fuzzy system can be successfully applied to other data sets. If an output is estimated 
without removing noise, the output error is about three times larger (refer to Table 3). Therefore, it is necessary 
to remove noise before the inputs are applied to the neuro-fuzzy inference system. Of course, the most part of this 
larger error is induced by noise itself but this large error delays the degradation detection. Figures 4 through 6 
show that the output signals are well estimated irrespective of the PCA and the denoising applications. Of course, 
when noise is not removed, the errors are relatively larger (refer to Table 3).  

In all the three application cases, the output measurement signals was continuously degraded on purpose in a 
degree of 4100.3 −×  of the measured values each time step from sec200  to verify the sensor monitoring 
algorithm. The failure flag '1' in each figure represents that the sensor is decided to be degraded. Figures 7 
through 9 show degradation detection times in case each output sensor is gradually degraded. If we cannot 
distinguish the detection time of each application case from these figures, we can find out the accurate detection 
times from Table 4. The detection times in Table 4 represent the times after the beginning of the gradual 
degradation. The detection times are almost the same (30~45 sec) irrespective of the PCA application (If the 
neuro-fuzzy inference system has four inputs in case the PCA is not applied, the detection time is expected to be 
a little longer). But if noise is not removed, the detection times are about two times longer (70~95 sec). This is 
because that the standard deviation of the estimation errors is used to determine whether it is degraded or not. As 
shown in Table 3, the standard deviation with the denoising application is smaller than that without the denoising 
application. Therefore, if the standard deviation is smaller, as can be known in Eq. (20), its log likelihood ratio 
(LLR) increases faster and reaches the specific bound B  faster, which makes the detection time fast.  

To verify the noise degradation detection of the proposed sensor monitoring algorithm, ten times larger 
noise is added from 200 sec. Figures 10 through 12 show degradation detection times for the three application 
cases. If noise is removed, the sudden large noise is detected simultaneously with the appearance of the new large 
noise. If the denoising technique is not applied, the detection times are 50 sec for the PRZR water level 
irrespective of the PCA application (refer to Table 4). And for the PRZR pressure, the detection times are 32 sec 
with the PCA application and 49 sec without the PCA application. For the hot-leg temperature, the detection 
times are 28 sec with the PCA applied and 49 sec with the PCA not applied. The detection times for noise 
degradation are faster if the PCA is applied.  

To verify the abrupt bias degradation detection, the output signals were suddenly biased from 200 sec to a 
degree of one tenth of the maximum variation maxσ  of each output signal (refer to Figs. 13-15). Irrespective of 
the PCA application and the denoising application, the sudden bias degradation is detected at almost the same 
time that the outputs are biased (refer to Table 4). 
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It is meaningful to verify the robustness of the sensor-monitoring algorithm in case that one of the input 
signals is gradually degraded and an output is not degraded. Table 5 shows the results of this test case. The 
outputs are decided to be degraded some time later for the degradation of some input signals and not decided to 
be degraded for the degradation of some other input signals. Since the output is not actually degraded, the outputs 
should not be decided to be degraded. However, if the degraded input is assumed to be an output and the neuro-
fuzzy inference system and the SPRT are applied for the output signal, the proposed sensor monitoring algorithm 
detects faster the degradation of the output (actually the degraded input), which means that we can identify the 
degraded inputs and isolate them. There is one exception which is a case consisting of a PRZR pressure output 
and a degraded PRZR temperature input (PT) (refer to Table 5.b). This is a special case that an output signal is 
very closely related with a degraded input (almost one-to-one relationship) (refer to Table 2).  

 

6. Conclusions 

In this work, a neuro-fuzzy inference system combining the wavelet denoising, the PCA and the SPRT has 
been developed to monitor sensor degradations. The input signals into the neuro-fuzzy inference system are 
preprocessed by the wavelet denoising and the number of inputs is reduced by the PCA analysis. The first four 
feature components of a total of ten feature components are used as its input signals. The number of inputs may 
change according to the information contents of the ten feature components. In this work, the number of the 
feature components was chosen to have at least 97 percent of all information content which was known from a 
correlation analysis. The input signals into the neuro-fuzzy inference system can easily be selected with the PCA 
applied. The neuro-fuzzy inference system actually estimates the relevant output signal using other input signals. 
The SPRT decides whether a sensor is degraded or not by using the residuals between the measured signal and 
the estimated signal. The applications of the PCA and the denoising provide better performance by and large in 
detecting the gradual and abrupt bias degradations and the noise degradation. Also, to study the effect of input 
degradation on the sensor-monitoring algorithm, it was assumed that one of the input signals was gradually 
degraded and an output was not degraded. It was known that we could identify the degraded inputs and isolate 
them except for almost one-to-one relationship between an output and an input before the output would be 
decided to be degraded.  
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Table 1. Relative information of each feature component. 

 
 

Feature component Pressurizer water level Pressurizer pressure Hot-leg temperature 

1st 5.3426e+001 6.0332e+001 5.2266e+001 

2nd 2.5443e+001 2.1864e+001 2.5851e+001 

3rd 1.6673e+001 1.3833e+001 1.6873e+001 

4th 4.3458e+000 3.8386e+000 4.8907e+000 

5th 8.7525e-002 1.0310e-001 9.3261e-002 

6th 1.4765e-002 1.7005e-002 1.6033e-002 

7th 4.8999e-003 6.6709e-003 6.1960e-003 

8th 3.6737e-003 3.6858e-003 3.6812e-003 

9th 3.7611e-004 8.6696e-004 3.7699e-004 

10th 2.9762e-004 2.8128e-004 3.0072e-004 
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Table 2. Correlation coefficient matrix for collected signals. 

 SF FF SP ST NL WL HT CT PP PL PT 
steam 
flowrate(SF)  1.0000 0.9894 -0.9571 -0.9569 -0.0015 -0.0007 0.9850 -0.4840 -0.1421 0.9542 -0.1422 

feed 
flowrate(FF) 0.9894 1.0000 -0.9353  -0.9347  -0.0880  -0.0875  0.9837  -0.4352  -0.0906  0.9595  -0.0909  

steam pres. 
(SP) -0.9571 -0.9353  1.0000 1.0000  -0.0249  -0.0257  -0.9088  0.7139  0.2935  -0.8327  0.2938  

steam temp.(ST) -0.9569 -0.9347  1.0000  1.0000 -0.0265  -0.0273  -0.9084  0.7147  0.2940  -0.8321  0.2944  
S/G water 
level(NL) -0.0015 -0.0880  -0.0249  -0.0265  1.0000 0.9996  -0.0325  -0.1094  -0.1965  -0.0436  -0.1957  

S/G wide-range 
level(WL) -0.0007 -0.0875  -0.0257  -0.0273  0.9996  1.0000 -0.0319  -0.1101  -0.1980  -0.0431  -0.1972  

hot-leg 
temp.(HT) 0.9850 0.9837  -0.9088  -0.9084  -0.0325  -0.0319  1.0000 -0.3647  0.0176  0.9849  0.0175  

cold-leg 
temp.(CT) -0.4840 -0.4352  0.7139  0.7147  -0.1094  -0.1101  -0.3647  1.0000 0.5769  -0.2089  0.5777  

PRZR 
pressure(PP) -0.1421 -0.0906  0.2935  0.2940  -0.1965  -0.1980  0.0176  0.5769  1.0000 0.0713  1.0000  

PRZR water 
level(PL) 0.9542 0.9595  -0.8327  -0.8321  -0.0436  -0.0431  0.9849  -0.2089  0.0713  1.0000 0.0714  

PRZR temp. (PT) -0.1422 -0.0909  0.2938  0.2944  -0.1957  -0.1972  0.0175  0.5777  1.0000  0.0714  1.0000 

 
Table 3. Estimation results of the neuro-fuzzy inference system for each sensor signal. 

(a) Pressurizer water level 
Denoising application Yes Yes No No 

PCA application Yes No Yes No 

Maximum error [%] 1.8492e-002 1.5167e-002 6.5160e-002 6.0784e-002 
Standard deviation 

of residuals 8.6789e-003 7.9163e-003 2.9507e-002 2.5684e-002 Training 
data 

Fitness 8.7238e-001 8.6383e-001 7.5001e-001 7.4708e-001 

Maximum error [%] 1.9034e-002 1.5358e-002 1.1175e-001 1.0037e-001 Verification 
data Standard deviation 

of residuals 8.6456e-003 7.8484e-003 3.0270e-002 2.8221e-002 

Number of neuro-fuzzy system inputs 4 5 4 5 

Used signals 4 PC's HT,CT,PP 
FF,WL 4 PC's HT,CT,PP 

FF,WL 
 

(b) Pressurizer pressure 
Denoising application Yes Yes No No 

PCA application Yes No Yes No 
Maximum error [%] 1.9353e-002 1.5018e-002 7.4203e-002 7.5069e-002 
Standard deviation 

of residuals 7.3319e-003 6.7849e-003 2.9633e-002 2.9889e-002 Training 
data 

Fitness 8.7039e-001 8.6442e-001 7.2986e-001 7.1340e-001 

Maximum error [%] 1.9955e-002 1.7090e-002 9.5220e-002 7.1340e-001 Verification 
data Standard deviation 

of residuals 7.2636e-003 6.7775e-003 9.5220e-002 2.9494e-002 

Number of neuro-fuzzy system inputs 4 5 4 5 

Used signals 4 PC's PT,PL,CT 
ST,NL 4 PC's PT,PL,CT 

ST,NL 
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(c) Hot-leg temperature 
Denoising application Yes Yes No No 

PCA application Yes No Yes No 
Maximum error [%] 1.9788e-002 1.4271e-002 4.6199e-002 4.8380e-002 
Standard deviation 

of residuals 7.8318e-003 5.9689e-003 2.1602e-002 2.1242e-002 Training 
data 

Fitness 8.6917e-001 8.6648e-001 7.9841e-001 7.7767e-001 

Maximum error [%] 2.0310e-002 1.5030e-002 6.1645e-002 6.8607e-002 Verification 
data Standard deviation 

of residuals 7.8381e-003 6.0023e-003 2.2931e-002 2.3732e-002 

Number of neuro-fuzzy system inputs 4 5 4 5 

Used signals 4 PC's CT,PP, 
PL,ST,WL 4 PC's CT,PP, 

PL,ST,WL 
 

Table 4. Failure detection times for various degradation types in each sensor application. 
 Detection times [sec] 

Denoising application Yes Yes No No 
PCA application Yes No Yes No 

Gradual bias degradation 42 41 95 74 

Noise degradation 0 0 50 50 Pressurizer 
water level 

Abrupt degradation 0 0 6 4 

Gradual bias degradation 45 44 82 83 

Noise degradation 0 0 32 49 Pressurizer 
pressure 

Abrupt degradation 0 0 2 2 

Gradual bias degradation 35 28 78 70 

Noise degradation 0 0 28 49 Hot-leg 
temperature 

Abrupt degradation 0 0 4 4 
 
 

Table 5. Determining whether the output is degraded or not when one of only input signals (not output) is 
gradually degraded. 

(a) Pressurizer water level 
Degraded input SF FF SP ST NL WL HT CT PP PT 

Output failure detection time 88 77 170 171 121 121 82 72 not 
found1 

not 
found 

Output failure detection time in 
case the degraded input is 
assumed to be an output  

27 30 45 31 25 36 35 16 45 58 

1. The output sensor is not decided to be degraded until final simulation time (500 sec after the beginning of the 
gradual degradation) is reached. 

(b) Pressurizer pressure 
Degraded input SF FF SP ST NL WL HT CT PL PT 

Output failure detection time 478 not 
found 

not 
found 

not 
found 

not 
found 

not 
found 194 358 not 

found 42 

Output failure detection time in 
case the degraded input is 
assumed to be an output  

27 30 45 31 25 36 35 16 42 58 
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(c) Hot-leg temperature 
Degraded input SF FF SP ST NL WL CT PP PL PT 

Output failure detection time 113 91 111 122 not 
found 

not 
found 258 490 79 492 

Output failure detection time in 
case the degraded input is 
assumed to be an output  

27 30 45 31 25 36 16 45 42 58 

 
 

 

 

 

 

 

 

Fig. 1. Schematic diagram of the proposed sensor-monitoring algorithm. 
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Fig. 2 Membership functions. 
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Fig. 3. A fuzzy inference system. 
  

Fig. 4. Estimation of the pressurizer water level (using the 
verification data that were not used in the training stage). 

Fig. 5. Estimation of the pressurizer pressure (using the 
verification data that were not used in the training stage). 

  

Fig. 6. Estimation of the hot-leg temperature (using the 
verification data that were not used in the training stage). 

Fig. 7. Gradual bias degradation detection of the 
pressurizer water level sensor. 
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Fig. 8. Gradual bias degradation detection of the 
pressurizer pressure sensor. 

Fig. 9. Gradual bias degradation detection of the hot-leg 
temperature sensor. 

  

Fig. 10. Noise degradation detection of the pressurizer 
water level sensor. 

Fig. 11. Noise degradation detection of the pressurizer 
pressure sensor. 

  

Fig. 12. Noise degradation detection of the hot-leg 
temperature sensor. 

Fig. 13. Abrupt degradation detection of the pressurizer 
water level sensor. 
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Fig. 14. Abrupt degradation detection of the pressurizer 
pressure sensor. 

Fig. 15. Abrupt degradation detection of the hot-leg 
temperature sensor. 
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