Fission Mo-99

Uncertainty Analysis on Nuclear Design in HANARO Core for Fission Mo-99 Production

,

Abstract

Uncertainty caused by variation of HANARO core condition was evaluated for the optimum fission moly target design under the condition of more reasonable model. Equilibrium core was modeled by MCNP and WIMS/VENTURE code system to analyze the uncertainty of response parameters caused by variation of input parameters which constitute core and target condition. Modeled equilibrium core was shown to be reliable to calculate reactivity worth by target loading and other design parameters such as Mo-99 yield ratio, heat generation rate, etc. Characteristics of design parameters evaluated from fresh fuel loaded core model was consistent to those evaluated from equilibrium core model. The variation of design parameters to the variation of the core condition was enough to be neglected.

Fission Moly		, Mo-99
, (., F , Mo-99)	, Fission Moly , , ,
. ,	,	MCNP/ORIGEN2
(nominal value) ,	. , 가	, , (Fresh Fuel Assembly)7
· Fission Moly 기		,
, . ,		가가 .
,	(reference core)	
,	가 Fission Moly	
(fresh fuel asse	mbly)가	가
ンド , フト	가	
2.		
		, ,
2.1 가 Fission Moly		
	,	
・・・、 アト・・・、 reactivity)アト	가 ,	(ex ecs s フト
, MCNP 가		Fission Moly

가 가 , Fission Moly OR

OR			アフ	የት	
,	가	가		, 7L	,
가				∠r	
2.2 MCNP					가
,	(Fixed	Source)			

(Neutro	n Source Distribution)	. MCNP			
			가		
, MCNP	ORIGEN2	(decay chain)	MOCKUP	가	
	,	:	가		
		MCNP ORIGE	N		
	가	(statistical en	rror)가	(propagation)	
		(biased)			가
	,	Hybrid			

7 7 7 、 MCNP WIMS-VENTURE 7 ・

가 .

1) WIMS-VENTURE

WIMS/VENTUER 1 WIMS 36 3 , 18 2 ,

VENTURE

MCNP			VENTURE				5cm
14	Mesh	70cm	,	Pitch	Size	1.15cm	6
Mesh	n	•					
,			가				가
	•						
				フ	ŀ		VENTURE

, WIMS

.

2) MCNP				
MCNP			가	
VENTURE		V	ENTUER	
Mesh	W IM S		MCNP	
		가	MCNP	

(cell) 가 WIMS VENTURE Geometry Map (cell) (set) FORTRAN MCNP Cell . , MCNP Material Card, Geometry Card, Source Card , MCNP WIMS-VENTURE . MUM 1 , OR3 가 R01, WIMS/VENTURE R02, R04, R05, R07, R08, OR1, SOR1, CAR1 , (cell) 5cm 14 Segment , 가 가 가 ,

20 . 가 WIMS-VENTURE 가

3.

 Fission Moly
 ,

 가(reactivity worth) KCODE
 ,

 (fixed source)
 .

 KCODE
 ,

 (hom ogeneous)
 (heterogeneous)

 .
 ,

 .
 ,

,	(transport)	7∤(reactivity worth)	KCODE
K_eff			71
	,	가	가
K_eff7	(fixed source)	. , 가	가(reactivity worth)
,		가 가	
		71	
,		가	가 .
1		. 1	CASE *-1

	가 8			5cm	14	Segment	
(cell)	(material comp	ositon)					
			,		MCN	Р	
(cell)	. CASE *-2	8		CASE *-1		가	
,							
,	MCNP			36		(cell)	
,	, CASE *-3	가	8				,
				,			
Fissile	,						
가	, ²³⁵ U		,			가	

•	,					3
			20cm	,	40cm	,
		10cm				

,

	BOC	МОС	EOC
CASE *-1	1.02452 ± 0.00119	1.03860 ± 0.00116	1.04166 ± 0.00130
CASE *-2	1.02006 ± 0.00121	1.02978 ± 0.00112	1.03197 ± 0.00118
CASE *-3	1.00948 ± 0.00039	1.01719 ± 0.00028	1.01651 ± 0.00039

* : BOC B, MOC M, EOC E

,

,

•

2 MOC OR3

4	.1	Εv	alu	ated	Т	arget

		2 ,	
			가
	,		
. ,	2		가
		가	가
,			가

2

Case #	Axial Length (cm)	T arget O.D. (cm)	Thickness (μm)			U Looding	Total U Loading	
			Clad.	Recoil Barrier	UO2 Fuel	(g/target)	(g)	
4-4	40	3.175	760	10	11	4.04	8.08	

4.2

1) Reactivity Worth

			가		3	
가가	3		,		가	mk
				, MCNP	his	tory
	,	3				

3 CASE 가

•

Case #	Reactivity Worth (mk ± 1)
Fresh Fuel Loaded Core	0.54 ± 0.25
CASE B-3	0.34 ± 0.59
CASE M-3	-0.10 ± 0.66
CASE E-3	1.32 ± 0.55

2) Thermal Hydraulic Safety

 $7^{\dagger} \qquad .$ $(1), (2) \quad (3) \qquad , \qquad \qquad /$ $, \qquad OR \qquad \qquad form \ loss$ $friction \ loss \qquad 7^{\dagger} \qquad .$ $\Delta P = \rho v^{2} \sum (K + f \frac{L}{D}) \qquad \qquad (1)$

$$f = 0.184 R e^{-0.2}$$
(2)
$$R_{e} = \frac{D_{e}U}{(3)}$$

4	. 4	,	가
가	가		

4 CASE

,

Case #	Max. SHF (MW/m ²)	Max. Clad. Temp. ()	T (Outlet - Inlet) ()
Fresh Fuel Loaded Core	0.808 ± 0.042	81.7 ± 2.05	0.62
CASE B-3	0.804 ± 0.028	81.5 ± 1.49	0.47
CASE M-3	0.816 ± 0.025	82.2 ± 1.64	0.47
CASE E-3	0.800 ± 0.026	81.5 ± 1.46	0.46

3) Mo-99

. 가 .

5 CASE

	5 days Irradiation			
Case #	Yield Ratio(Ci ⁹⁹ Mo/gU) OR3, 5 average	Yield Ratio(Ci ⁹⁹ Mo/gU) OR3		
Fresh Fuel Loaded Core	31.41 ± 0.47	34.97 ± 0.80		
CASE B-3	-	35.31 ± 0.36		
CASE M-3	-	35.50 ± 0.39		
CASE E-3	-	34.31 ± 0.35		

.

.

•

.

4) Mo-99 Annual Production and Waste Production Amount

•

.

,	가	M o- 99
CASE		

5.

ł
,

Acknowledgements

WIMS/VENTURE

REFERENCE

,

1. J. F. Briesmeister, "MCNP- A General Monte Carlo N-Particle Transport Code, Version 4B," LA 12625-M, Los Alamos National Laboratory, 1997.

2.		, KAERI/TR-710/96,	, 1996.	
3.	, "MCNP		," KAERI⁄	- 30/94,
	, 1994.			

- Dong-Keun Cho, Myung-Hyun Kim, Dong-Sung Sohn, "Nuclear Design Methodology of Fission Moly Target for Research Reactor," Journal of the Korean Nuclear Society, Vol.31, Number 4, pp.365-374, (1999)
- G. L. Hofman, T. C. Wiencek, E. L, Wood, J. L. Snelgrove, "Development of ⁹⁹Mo Isotope Production Targets Employing Uranium Metal Foils," *Trans. Am. Nucl. Sci.* 77, pp. 100-101, November, (1997)
- 6. M. Necati Özisik, "Heat Transfer : A Basic Approach," New York : McGraw-Hill, (1985)
- 7., "UN (Uranium Nitride)Mo-99

," KAERI/CM-381/99, , 1999.