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Abstract - In this paper, a new high-order nodal method based on the function expansion, subcell
balances for solving the discrete ordinates even-parity transport problems in slab geometry is
presented. Two methods are devised to expand the even-parity angular flux : polynomial expansion
(four terms including constant) and analytic eigenfunction expansion (five terms including constant
particular solution). To derive the coupling equations, the continuity conditions of interface odd-parity
angular flux and subcell balances are used. The numerical results are compared with those of diamond
difference (DD) and linear moment (LM) methods for the first-order form transport equation. The
results show that the method of analytic eigenfunction expansion gives more accurate solutions than
DD and LM but that the method of polynomial expansion is less accurate than LM or more accurate
than LM (depends on the problems). For S; angular quadrature set, it is shown that the method of

analytic eigenfuction expansion is an exact differencing scheme (no truncation error).
I. Introduction

In few decades, there have been significant advances” in the nodal methods for solving the
neutron diffusion problems. The methods use the expansion of the neutron flux or the transverse
leakages by polynomials or analytic basis functions. These successes lead to some applications of these
nodal methods to even-parity or simplified transport equations™. To our knowledge, there have been no
use of exact eigenfunction expansions and subcell balance methods to couple the nodal variables. The

subcell balance methods™®’

in devising auxiliary equations have been popularly used in nodal methods
for solving discrete ordinates form of the first-order transport equation. In general, it is more difficult
to devise accurate differencing schemes in solving second-order form (or even-parity) of the transport
equation than in the first-order form. Most of method solving the even-parity transport equation depend
on the finite difference method (FDM) and finite element method (FEM). On the other hand, recently,
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several researchers

have studied to devise highly accurate or exact differencing methods for solving
the first-order form of one-group and multi-group transport equation in one-dimensional or
two-dimensional geometries.

In this paper, a new high-order nodal method based on the function expansion, subcell balances
for solving the discrete ordinates even-parity transport problems in slab geometry is devised. In the
method, the even-parity angular flux is expanded by polynomials or analytic eigenfunctions. At present,
the polynomial expansion is performed by using four terms including constant term and the analytic
eigenfunction expansion is by using dominant four terms and one particular solution term. To derive
the nodal coupling equation, the continuity conditions of the interface odd-parity angular flux and the
subcell balance conditions are used. To test our method, the method is applied to two simple

benchmark problems. The numerical results are compared with those of diamond difference (DD) and



linear moment (LM) methods'' for the first-order form transport equation. The results show that the
method of analytic eigenfunction expansion gives more accurate solutions than DD and LM but that
the method of polynomial expansion is less accurate than LM or more accurate than LM. For S,
angular quadrature set, it is shown that the method of analytic eigenfuction expansion is an exact

differencing scheme (no truncation error).
II. Theory and Computational Methodology

Our method starts with the following transport equation of second-order form in slab geometry :

Ay ) 8¢m(x)
Bmax\ 6

) +odi(0 =0 w47 () +a, M

where w, is the angular weight normalized to unity over half-range angular domain and al
represents the even-parity angular flux. In Eq.(1), it is assumed that the scattering is isotropic. The
odd-parity angular flux ¢ is represented in terms of the even-parity angular flux, similarly to Fick's

law as follows :
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And the true angular flux is simply given by the arithmetic average of the even- and odd-parity

angular fluxes. In fact, this relation is due to the following definitions :
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From the first equation of Egs.(3), the scalar flux is given by
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Therefore, the even-parity transport equation (Eq.(1)) can be solved by considering only angular domain
of 4>(. As the first step of derivation, the even-parity angular flux in a node [ — %/2, #/2] is
expanded by

GH(x) = apt bpx+ cpx’ + dpx’ 5)
for polynomial expansion and for analytic eigenfunction expansion, is by
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In Eq.(6), v, vy are the first and second dominant eigenvalues of Eq.(1), and they are determined by
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where ¢ means the scattering-to-total ratio. For simplicity, all derivations will be performed for the

analytic eigenfunction expansion. Since there are four expansion coefficients in Eq.(6), four nodal



variables are required to be used. At present, the two even-parity interface angular fluxes (</1:;’ L </1;’ R)

and two subcell average even-parity angular fluxes (gb; hLJb;, ar) are used as the nodal variables.

By using Eq.(6), the four nodal variables can be represented by four expansion coefficients. And some
simple algebraic procedures lead to the following relations between the nodal variables and expansion

coefficients :
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where a,f,7,A4,a, 8 71,4, are represented by cosh( 2, ) and sinh ( %, h) For example, a is
given by
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To derive the nodal coupling equations, the following subcell balance equation obtained by integrating
Eq.(1) over left half of the node is used :
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where ¢, - represents the odd-parity flux at the center of the node. The odd-parity flux ¢, ; at the

left of the node is calculated by using Eq.(2) and (6) as follows :
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The odd-parity flux ¢,, - can be calculated similarly and it is given by
lm 0Yn Lm Lm
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By substituting the expansion coefficients (i.e., Eq.(8)) into Eq.(11) and (12), the odd-parity fluxes can

be represented in terms of nodal variables. For example, ¢, ; is given by

Gt =Tom$m &t Tinbm = Tim$m = Tim@m i~ T5mfaj , (13)
where the coefficients 7% are given by
Ty,= L ymcosh (57~ 2, ah )+ wSinh (5% 2, oh )+7 71mcosh (57~ 2, ah )‘f’i a1,sinh (5 - h )
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Therefore, the subcell balance equation over left half of the node is given by
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Simiarly, the subcell balance equation over right half of the node can be derived and it is given by
h h
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The next nodal coupling equations are obtained by using the following continuity conditions of the

interface odd-parity angular fluxes :

P R i= bm,L.i+15 17)
where the index ¢ represents the position of the node. By using Eq.(13) and its counter part for the
right side, Eq.(17) can be written by
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where </z;’i+1 represents the even-parity angular flux for the direction 2 at the interface between

node 7 and 7+ 1. Up to now, the two nodal coupling equations are derived completely but the
boundary conditions must be derived additionally to close the nodal coupling equations. For example, it

can be shown that the vacuum condition at the left boundary surface is given by

.
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In Eq.(19), the second term of left side is simply the odd-parity angular flux at the left boundary and
therefore, by using Eq.(13), it can be written in terms of nodal variables. The computational procedure
of our method can be summarized as follows : first, the half cell scalar fluxes for all nodes are
guessed for initial calculation of the scattering source. Second, subcell balance equations are solved
with the guessed interface even-parity angular fluxes and the equations representing the continuity
condition of interface odd-parity angular fluxes are solved by using previously calculated half cell
angular fluxes. Third, new scattering sources for half cells are computed and its convergence is
checked.

III. Numerical Results

To verify our new nodal method for solving even-parity transport equation, two benchmark
problems are considered. The first problem consists of a homogeneous region having o¢=1 and
0,=0.999. The size of this problem is 40cm and the vacuum conditions are used at the boundaries.

The uniform isotropic inhomogeneous source is located in the region between 10cm and 20cm. The

configuration is given in Fig. 1.

source region :

q=10.0 ns/cm’sec
Vacuum Vacuum

0.0 10.0cm 20.0cm 30.0cm 40.0cm

Fig. 1 Configuration of the benchmark problem I



This problem is divided into four regions and the accuracy of our method is tested by changing the
number of nodes for each region. In Table 1, the results are compared with DD, LM and the infinite
medium Green Function (IMGF) Method. It is known that the IMGF method gives the exact solutions
of the discrete-ordinates transport problems in slab geometry. All numerical results are obtained by

using S4 angular quadrature set.

Table 1 Comparison of the region average scalar fluxes for benchmark problem I

Region DD LM POL ANAL IMGF

1° 760.764 735.208 716.817 714.603

| 2 724.776 717.347 715.753 714.603 714.605
3 719.307 715.247 715.203 714.603
4 717.106 714.789 714.934 714.603
1 1534.815 | 1569.575 | 1690.347 | 1687.793
2 1649.937 | 1668.934 | 1688.705 | 1687.793

2 3 1671.297 | 1682.097 | 1688.259 | 1687.793 1687.796
4 1678.400 | 1685.480 | 1688.051 | 1687.793
1 1169.092 | 1136.696 | 1105.308 | 1104.530
2 1119.362 | 1109.574 | 1105.011 | 1104.530

3 3 1111.386 | 1106.015 | 1104.784 | 1104.530 1104.534
4 1108.251 | 1105.109 | 1104.670 | 1104.530
1 379.294 368.081 362.117 360.748
2 365.247 361.584 361.441 360.748

4 3 362.556 360.885 361.109 360.748 360.749
4 361.835 360.758 360.948 360.748

*Number of the nodes for each region

The results show that our method (ANAL) gives nearly exact solution and its solution does not depend
on the number of nodes (i.e., no truncation error). However, our method with analytic eigenfunction
expansion doesn't give the exact solution if angular quadrature sets of higher order than S, are used. It
is considered that the small discrepancy between our method (ANAL) and IMGF is due to roundoff
error or incomplete convergence. And our method with polynomial expansion (POL) converges to the
exact solution more rapidly than DD and LM do. The second benchmark problem consists of four
different regions. This problem is highly heterogeneous. The configuration, cross sections, and sources

of the benchmark problem II are described in Fig. 2.

Vacuum

g=10.0 ns/cm’sec
0=5
0,=4.0

g=0.0 ns/cm’sec
0=2.0
0,=0.7

g=5.0 ns/cm’sec
0=4.0
0,=2.0

q=1.0 ns/cm’sec
o=1.0
0,=0.99

Vacuum

0.0

20.0cm

40.0cm

60.0cm

Fig. 2 Configuration of the benchmark problem II

80.0cm

The numerical results are compared in Table 2. The results show that our method with analytic



eigenfunction expansion agrees with the exact solution of IMGF. In fact, the convergence of scattering
source iteration for this problem is much more rapid than the benchmark problem I since the scattering
ratio is smaller. Therefore, it is considered that the results of ANAL is fully converged and it leads to
the exact agreement..

Table 2 Comparison of the region average scalar fluxes results for benchmark problem II

Region LM POL ANAL IMGF
I° 9.7461 9.9836 9.8378
2 9.7614 9.9603 9.8378
3 9.7697 9.9421 9.8378 98378
4 9.7773 9.9269 9.8378
1 | 1.2046E-04[1.7713E-02 | 7.9714E-02
2 | 1.1146E-02 | 1.9437E-02 | 7.9714E-02

2 3 | 1.1053E-02| 2.6141E-02 | 7.9714E-02 | 0 4E02
4 | 1.0696E-02 | 3.3236E-06 | 7.9714E-02
1 2.6621 25371 2.6019
2 26128 | 25652 | 2.6019
3 26064 | 25778 | 26019 | 2017
4 2.6044 | 2.5849 | 2.6019
1 282440 | 67.3003 | 52.6793
2 | 47.8246 | 61.5203 | 52.6793

4 3 504607 | 589695 | s52.6793 | 2773
4 | 513405 | 574119 | 52.6793

*Number of the nodes for each region

The continuous solution by IMGF is given in Fig. 3. Fig. 3 shows that there are steep gradients at the
interfaces between regions. For this problem, all region scalar fluxes for POL except region 2 are less
accurate than those of LM. Therefore, it is considered that more detail comparisons of POL and LM

are required to investigate their accuracy in future.
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Fig. 3 The scalar flux distribution of the benchmark problem II



IV. Summary and Conclusions

In this paper, a new nodal method for solving the even-parity transport equation in slab geometry
is presented. The nodal method is based on the function expansion and subcell balances. Two methods
of function expansion are introduced : one is by the polynomial and the other is by analytic
eigenfunctions. At present, the number of terms in the expansion is four. From numerical results, it is
concluded that our method with analytic eigenfunctions gives the exact solution when S, angular
quadrature set is used. That is to say, the our method with analytic eigenfunction expansion gives
solutions with no truncation error in case of S; However, the accuracy of our method with polynomial
expansion relative to Linear Moment method depends on problems. For homogeneous problem tested
here, the our method with polynomial expansion gave more accurate solution than LM while the
accuracy of LM was more good than our method with polynomial expansion. In future work, the

acceleration and multi-dimensional extensions of the nodal methods will be studied.
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