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Abstract 

In this work, this receding horizon control method was used to control the water level of nuclear steam 
generators and applied to a linear model and also a nonlinear model of steam generators. A receding horizon 
control method is to solve an optimization problem for finite future steps at current time and to implement the 
first optimal control input as the current control input. The procedure is then repeated at each subsequent instant. 
The dynamics of steam generators are very different according to power levels. The receding horizon controller 
was designed by using a reduced linear steam generator model fixed over a certain power range. The proposed 
controller designed at a fixed power level showed good performance for any other power level within this power 
range. The steam generator shows actually nonlinear characteristics. Therefore, the proposed algorithm was 
implemented for a nonlinear model of the nuclear steam generator to verify its real performance and also, showed 
good responses. 

1.   Introduction 

To properly control the water level of a nuclear steam generator is very important in securing the sufficient 
cooling water of the nuclear reactor and in preventing the damage of turbine blades. The inadequate and 
insufficient performance of the conventional controller has often resulted in reactor trip (shutdown) and enforced 
operators to hang on manual operation at low power (mainly, at a startup time of a nuclear power plant). In 
particular, since the swell and shrink phenomena are significantly greater at low power, even to a skilled operator, 
it is hard to react effectively in response to such a reverse dynamics of the water level, which is induced by the 
non-minimum phase effects. Also, the steam generator is a highly complex, non-linear, and time-varying system. 
And its parameters undergo large changes according to changes in operating conditions [1]. The steam generator 
with narrow stability margin cannot work satisfactorily with fixed P-I gains over all power levels. Therefore, 
many advanced control methods that include adaptive controllers [1,2], optimal controllers [3,4], and fuzzy logic 
controllers [5-8], have been suggested to resolve the steam generator water level control problem. 

The receding horizon control methodology has received much attention as a powerful tool for the control of 
industrial process systems [9-14]. The basic concept of the receding horizon control is to solve an optimization 
problem for a finite future at current time and to implement the first optimal control input as the current control 
input. The optimization solutions for a specified objective function and also manipulated variables for 
implementation are shown in Fig. 1 as time goes on. As it were, at the present time k , the present and future 
control inputs on the control horizon M , )1(,),1(),( −++ Mkukuku , and the predicted outputs over the 
prediction horizon N , )(,),2(),1( Nkykyky +++ , are obtained by solving an optimization problem 
represented by a specified objective function. Among these solutions, only the first computed change in the 
manipulated variable, )(ku , is implemented for time ]1,[ +kk . The procedure is then repeated at each 
subsequent instant. This method presents many advantages over the conventional infinite horizon control because 
it is possible to handle input and state (or output) constraints in a systematic manner during the design and 
implementation of the control. In particular, it is a suitable control strategy for time varying systems.  

Therefore, in this work, the receding horizon control method was used to solve the steam generator water 
level control problems. The objective of this work is to design an automatic receding horizon controller which 
eliminates any manual operation from start-up to full load transient conditions. The proposed controller was 
applied to two different linear models [1,15] and also, to a nonlinear model [16] of the nuclear steam generator to 
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verify its real performance. The receding horizon controller was designed by using a reduced linear steam 
generator model fixed over a certain power range.  

2. Receding Horizon Control Method 

Receding horizon control is a popular technique for the control of slow dynamical systems. At every time 
instant receding horizon control requires the on-line solution of an optimization problem to compute optimal 
control inputs over a fixed number of future time instants, known as the time horizon. The on-line optimization 
can be typically reduced to either a linear program or a quadratic program.  

The receding horizon control method is to solve an optimization problem for a finite future at current time 
and to implement the first optimal control input as the current control input. The procedure is then repeated at 
each subsequent instant. Figure 2 shows this basic concept [11]. As it were, for any assumed set of present and 
future control moves, the future behavior of the process outputs can be predicted over a horizon N , and the M  
present and future control moves ( NM ≤ ) are computed to minimize a quadratic objective function. Though 
M  control moves are calculated, only the first control move is implemented. At the next period, new values of 
the measured output are obtained, the control horizon is shifted forward by one step, and the same calculations 
are repeated.  

The dynamics of a steam generator is described in terms of input (feedwater flowrate; u ), output (water 
level; y ) and measurable disturbance (steam flowrate; v ). Based on the step response of the steam generator 
water level for step changes of the feedwater flowrate and the steam flowrate, Irving [1] derived the following 4-
th order Laplace transfer function for steam generators: 
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where  

the capital letters, )(),( sUsY  and )(sV , represent the Laplace-transformed variables of the steam 
generator water level )(ty , the feedwater flowrate )(tu  and the steam flowrate )(tv , respectively,  

1τ  and 2τ  are damping time constants, 

T  is the period of the mechanical oscillation, 

1G  is the magnitude of the mass capacity effect, 

2G  is the magnitude of the swell or shrink due to the feedwater or steam flowrates, 

3G  is the magnitude of the mechanical oscillation. 

The first term means the water level quantity due to the actual water inventory change induced by the 
feedwater inlet into the steam generator and the steam outlet from it. The second term means the water level 
quantity due to the swell and shrink phenomena which appear initially if the feedwater or steam flowrate changes 
and are opposite to long term effects. The last term means the water level quantity due to the mechanical 
oscillation. This is due to the momentum of the water in the downcomer keeping the recirculating flow going 
down initially and then slowing down, which causes the damping oscillations. The third term of the right hand 
side in Eq. (1) is extremely small in affecting the water level response [17]. Therefore, the 4-th order linear 
model can be reduced well without making a great difference to a second order linear model and the proposed 
control method can be designed by using this reduced nuclear steam generator model. If we neglect the third term 
in Eq. (1), nuclear steam generators can be described in the following discrete state equation:  
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where nRk ∈)(x , )1()()( −−=∆ kukuku , )1()()( −−=∆ kvkvkv , and )(ky  are the state vector, control input 
(feedwater flowrate), measurable disturbance (steam flowrate), and process output (steam generator water level), 
respectively. In Eq. (2), the change of signals, vu ∆∆ and , was used to remove the offset error. From now on, to 
design the receding horizon controller, the following time invariant discrete system will be considered: 
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where  

)()()( kvkukuuv ∆−∆=∆ . 

The associated performance index for designing the controller can be written as the following quadratic function: 
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where r  is a reference input (target water level), and Q  ( 0≥ ), FQ  ( 0≥ ) and µ  ( 0> ) are weighting values to 
penalize particular components of ( )ry −  or uvu∆  at certain future time intervals. In the above equation, it is 
assumed that 0)()( =+∆==+∆ NkuMku uvuv . 

The objective is to find the control sequence, )1(,),1(),( −++ Mkukuku uvuvuv , to minimize the 
quadratic function. In this work, the powerful Lagrange-multiplier approach will be used to derive a receding 
horizon controller for minimizing the above cost function. Since there is a constraint function 

)()()1( kukk uv∆+=+ BAxx  or )()1( kk Axx =+ (note that 0)()( =+∆==+∆ NkuMku uvuv )  specified at 
each time k  in the interval of interest ],[ Nkk + , we shall require a Lagrange multiplier at each time. We append 
the constraint to the performance index to define an augmented performance index 'J  by 
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where 
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Defining the Hamiltonian function as 
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we can rewrite the augmented performance index as follows: 
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We now examine the increment in 'J  due to increments in all the variables, ),(),( jkujk uv +∆+x  and )( jk +λ . 
According to the Lagrange-multiplier theory, at a constrained minimum this increment 'dJ  should be zero. 
Therefore,  
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where j
jkH )( +x  represents the differential of jH  with respect to )( jk +x  such as 

)()( jk
HH

j
j

jk +∂
∂≡+ xx  and so on. 

Necessary conditions for a constrained minimum are thus given by 
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which arise from the terms inside the summations of Eq. (8) and the coefficients of ),(kduuv  and  
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From Eqs. (9)-(11) 
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From Eq. (12), Boundary conditions are as follows: 
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The stationarity condition, Eq. (16), shows that  
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The Lagrange multiplier is a variable that is determined by its own dynamical equation. It is called the 
costate of the system or the adjoint system. The coupled state and costate equations can be written as 
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This version of the control law cannot be implemented in practice, since the boundary conditions are split 
between times 0=j  for )( jk +x  and Nj =  for )( jk +λ . From Eq. (17), it seems reasonable to assume that 
for all Nj ≤ , we can write 

)()()()( jkjkjjk +−+=+ gxFλ . (21) 

This will turn out to be a valid assumption if consistent equations can be found for )( jF  and )( jk +g . We can 
solve the following control input through very lengthy derivation: 
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Since only the first control input is implemented, the control input of the receding horizon controller is as 
follows: 

)1()0()()0()( ++−=∆ kkku guv gKxK . (23) 

Therefore, the control input (feedwater flowrate) is calculated as follows: 

)1()0()()0()1()1()()( ++−−−−+= kkkvkukvku g gKxK . (24) 

In Eqs. (23) and (24), )0(K  and )0(gK  are constants for time-invariant systems. However, )1( +kg  should be 

solved every time step since the value depends on the reference input (water level setpoint). Since the state )(kx  
in Eq. (24) is not measured variables and not exactly known because of modeling inaccuracies, disturbances and 
noises, in this work, a well-known Kalman filter function of MATLAB [18] is used to observe the state. Figure 3 
shows the structure of the designed receding horizon controller. In this figure, it is shown that the changes of the 
water level setpoint and steam flowrate drive the control actions. 

In order to guarantee the closed-loop stability for the proposed controller, the following condition of the 
matrix inequality must be subjected on the terminal weighting matrix FQ  [14]: 
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3. Application to the Steam Generator Water Level Control 

The steam generator system is a relatively slow system. Therefore, in numerical simulations, the sampling 
time was chosen to be 5 sec as recommended in the literature [19] for a liquid level control system. Although 
most nuclear power plants are usually operated at 100 percent power level (base load), sometimes at startup time 
and trivial problem occurrences, nuclear power plants can be operated at relatively low power levels. Therefore, 
in this paper, the steam generator water level controller was designed to deal with these transients (water level 
deviation and steam flow disturbance) and especially, computer simulations were conducted to investigate the 
output tracking performance and swell and shrink characteristics. Therefore, it is supposed that the controlled 
plant was initially in a steady state condition, then the setpoint of the water level increases by step at 500 sec, and 
the steam flowrate (measurable disturbance) increases by step at 3000 sec and gradually decreases from 5000 sec 
to 7000 sec. 

Note that the steam generator water level process system varies according to the power level but the 2nd 
order controller design model is fixed within a certain power range. Of course, the receding horizon controller is 
redesigned automatically if the operating condition of the steam generator is beyond a specified power range. The 
prediction and control horizons were chosen as 100 and 5, respectively, and the same values were used regardless 
of power level. 

3.1 Linear Model A 

Numerical simulations were performed to study the performance of the proposed algorithm. The linear 
steam generator model described in Eq. (1) was used. The parameter values of a steam generator at several power 
levels are given in Table 1. Since the parameter values are given at several specific power levels and very 
different according to the power levels, the parameters of the controlled plant were used by being interpolated 
versus power. Since ( )212 τGG −  is greater than zero, Eq. (1) has a positive zero that represents a non-minimum 
phase effect. An unstable zero lowers the control gain to preserve stability. As the load decreases, the zero moves 
to the right, stability being more critical and the water level of the steam generator being more difficult to control. 
The transfer function of the design model used to design the receding horizon controller consists of the first and 
second terms of Eq. (1) as follows:  
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A controlled plant and a controller design model for numerical simulations are summarized in Table 1. The 
controller design model in Table 1 was represented by a transfer function with parameter values, 21, GG and 2τ . 
These parameters are a little different from those used in the controlled plant to examine the effects that the 
parameters are not usually well known. Also, note that we can check the effects of unmodeled dynamics (for 
example, mechanical oscillation term in Eq. (1)) since the mechanical oscillation term of the controlled plant 
were not contained in the controller design model. A discrete state equation can be derived from the transfer 
function of the controller design model to design the proposed controller. 

The weighting factors, Q , FQ  and µ  are 0.1, 1, and 500000, respectively, which were chosen to meet the 
stability condition, Eq. (25) and to accomplish good performance. And the same weighting factors were used 
irrespective of the power level. In these simulations of the linear model A, the proposed controller at each power 
level was designed using the controller design model with the corresponding parameters of each power range.  

Figures 4 and 5 show the performances of this proposed controller. In these figures, all values represent the 
difference from the corresponding steady state values. Therefore, all values are zeros at the steady state. The 
magnitude of the disturbance at 3000 sec corresponds to 5 percent steam flowrate increase at each power level. 
The proposed control algorithm tracks well the setpoint and steam flowrate changes. The swell and shrink 
phenomena are larger at low power levels than those at high power levels. Also, the measured water level tracks 
its setpoint faster at high powers than at low powers. 

Figure 6 shows the performances of the proposed controller and the conventional PI (proportional integral) 
controller around 5 percent power level. In this simulation, the PI controller gains were optimized by a genetic 
algorithm (refer to [20]) and also, the several parameters of the proposed controller were changed by focusing on 
its performance: 54=N , 1=M , 1=Q , 1=FQ  and .30000=µ  The proposed controller shows better 
performance under steam flowrate disturbances and the step change of the water level setpoint, and also shows a 
little faster responses.  

3.2 Linear Model B 

Numerical simulations for another linear model were conducted and the linear model is described in Table 2 
[15]. The model had been derived by using the thermal hydraulic model of an 857 MWt Westinghouse F-type 
steam generator [21,22]. The steam generator water level is related with four inputs which are feedwater flowrate, 
steam flowrate, feedwater temperature, and primary coolant temperature. However, in this work, the effects of 
feedwater temperature and primary coolant temperature were neglected, which is because their effects are 
relatively small.  

The weighting factors, Q , FQ  and µ  are 0.1, 1, and 0.7, respectively and the same weighting factors were 
used irrespective of the power level. In these simulations of the linear model B, the proposed controller at all the 
power levels is designed by using the controller design model (refer to Table 1) of 100 percent power level. The 
parameters 1G  and 2G  of the controller design model are corrected so that the units of the linear models A and B 
are consistent each other (e.g., rated flowrate and water level unit). 

Figures 7 and 8 show the performances of this proposed controller. The simulation situations are the same as 
those of the linear model A. The proposed control algorithm tracks well the setpoint and steam flowrate changes. 
The swell and shrink phenomena are larger at low power levels than those at high power levels. The measured 
water level tracks its setpoint faster at high powers than at low powers. The water level transients of the linear 
model B for the steam flowrate disturbance are relatively larger than that of the linear model A, which is because 
that the swell and shrink phenomena due to the steam flowrate change for the linear model B are described to be 
larger than those for the linear model A. In these simulations of the linear model B, we can see that the swell and 
shrink phenomena due to the feedwater flowrate change are not described adequately by observing the water 
level response around 500 sec when the water level setpoint changes suddenly and the feedwater flowrate 
increases heavily. However, it can be seen that the swell and shrink phenomena due to the steam flowrate change 
are described well by observing the water level response around 3000 sec when the steam flowrate disturbance 
occurs. 

3.3 Nonlinear Model 

 The steam generator is actually a nonlinear system. Therefore, the proposed controller has to be verified 
through implementation on a nonlinear model of the nuclear steam generator to examine its actual performance. 
The nonlinear model developed by Lee and No [16] was used in this work and Table 2 shows the design 
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parameters of a steam generator used to develope the nonlinear model. Since the computer code for the nonlinear 
model is written in the Fortran language, in order to perform the numerical simulations, the proposed control 
algorithm written in the MATLAB language [18] was interfaced with the code written in the Fortran language. 

The weighting factors, Q , FQ  and µ  were chosen as 0.5, 1, and 500, respectively. In these simulations of 
the nonlinear case, the same weighting factors were used irrespective of the power level. 

Since this nonlinear model is inadequate to design the controller, the linear model mentioned above (the 
controller design model at 100 percent power level, refer to Table 1) was used to design the controller. Note that 
the same controller design model for simulations of all power levels was used. The parameters 1G  and 2G  of the 
controller design model are corrected so that the units of the linear models A and B are consistent each other. 
Figures 9 and 10 show the performance of the proposed algorithm for this nonlinear controlled plant. The 
conditions for the computer simulations of the nonlinear case are the same as those for the linear cases. In the 
same way as the linear model B, we can see that the swell and shrink phenomena due to the feedwater flowrate 
change are not described adequately by observing the water level response around 500 sec when the water level 
setpoint changes suddenly and the feedwater flowrate increases heavily. However, it can be seen that the swell 
and shrink phenomena due to the steam flowrate change are described well by observing the water level response 
around 3000 sec when the steam flowrate disturbance occurs. Also, it can be seen that these swell and shrink 
phenomena are much larger at low powers. Sudden steam disturbance (steam flowrate increase) at 3000 sec 
induces large surge ranging from about 65 cm to 10 cm for a short time period at 5 percent power simulation. 
Although the controller design model (refer to Table 1) at 100 percent power (irrespective of actual power levels 
at the nonlinear controlled plant) was used in designing the proposed algorithm to be implemented on the 
nonlinear model, its performance is good. 

4.  Conclusions 

In this work, the receding horizon control method was developed to control the water level of nuclear steam 
generators. The developed controller was applied to the linear and nonlinear models for nuclear steam generators. 
The steam generator water level controller was designed to effectively deal with water level deviation and steam 
flow disturbance and especially, computer simulations were conducted to investigate the output tracking 
performance and swell and shrink characteristics. The parameters of the linear model for a steam generator are 
very different according to the power levels. However, although the receding horizon controller was designed by 
using the linear steam generator model fixed over a certain power range, the proposed controller showed good 
performance for any other power level within the power range. The proposed controller was compared to the PI 
controller and was known to have better performance. Since the steam generator has nonlinear characteristics, the 
proposed algorithm was applied to a nonlinear model of the nuclear steam generator to examine its actual 
performance. Also, the proposed controller showed good performance for the water level setpoint and steam 
flowrate (measurable disturbance) changes.  
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Table 1. Parameters of a steam generator linear model A at several powers. 
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Table 2. Steam generator open loop transfer functions between various inputs and water level  
(linear model B). 

1) Feedwater Flow Rate and Level - ),(1 PsU  

s
PsU

4

1
1011.1),(

−×=  

   
2

1
2

2

1
)()()(2

)(
)(

PsPPs
P

PK
nn

n

ωωζ
ω

++
⋅+    

where,  

 









+





−= − 16.1

5
04.001268.0)(

2
0964.0

1
PePK P , 

 PeP 03.0
1 2283.0)( =ζ , 

 
1for,

1)(

)(
)(

1for,
)(1

)(
)(

12
1

12
1

>
−

=

<
−

=

ς
ζ

ω
ω

ς
ζ

ω
ω

P

P
P

P

P
P

d
n

d
n

 

)(
)(

Pt
P

P
d

πω = ,  

 107.317)( 1764.0 += − P
P ePt  

2) Steam Flow Rate and Level - ),(2 PsU  

05.0
05.0)(1011.1),( 2

4

2 +
⋅+×−=

−

s
PK

s
PsU   

 where,  
 007.001957.0)( 07348.0

2 += − PePK  
3) Primary Coolant Temp. and Level – ),(3 PsU  

se
cs

cK
bsas

baKPsU 2
2,31,33 ))((

),( −






+

⋅−
++

−⋅=

 where,  
242

1,3 10321.60105.010227.2)( PPPK −− ×−+×=

                 1017.1 35 P−×+ ,   %25≤P  
        ),25(104071.0 4 −⋅×−= − P  %25>P  

 
 PPK 4

2,3 10238.2004562.0  )( −×+= ,   %5 ≤P  

         P410634.2006186.0 −×−=  
              2510248.3 P−×+ , %15  5%   ≤≤ P  
         P410082.600042.0 −×+= ,   
                                %20  15%   ≤≤ P  
         P410916.4002752.0 −×+= ,  %20>P  
 PPa 01954.0084576.0)( += ,        %10 ≤P  
       P01075.001725.0 += ,  %15  10%   ≤≤ P  
       P00825.021.0 += ,      %20  15%   ≤≤ P  
       P0125.0125.0 += ,             %20>P  

 
10

)()( PaPb =  

 PPc 001.0)( = ,                        %5≤P  
      P04.00.2 +−= ,           %10  5%   ≤≤ P  
      0.2= ,                           %10 >P  
4) Feedwater Temperature and Level - ),(4 PsU  

2
4

2

2

44 )()()(2
)()(),(

PsPPs
PPKPsU

nn

n

ωωζ
ω

++
⋅=  

 where,  
 PePK 0348.04

4 10425.4)( −×= ,     for all power  

 PeP 06.0
4 5345.0)( −=ζ ,               %15≤P  

       1716.0= ,                      %15>P  

 
2

4 )(1

)(
)(

P

P
P d

n
ζ

ω
ω

−
= ,  

)(
)(

Pt
P

P
d

πω =  

 22195)( 16.0 += − P
P ePt ,         for all power  

                                     

Table 3. Design parameters of a steam generator used for the nonlinear model (M.K.S. unit). 
 
 
 
 
 
 
 
 

Name Size 
Cross sectional steam dome area 
Secondary (Primary) heat transfer area 
Cross sectional tube bundle area 
Cross sectional downcomer area 
Cross sectional riser inlet area 
Cross sectional riser outlet area 
Downcomer volume 
Steam dome volume 
Boiling region volume 
Riser volume 
Lower downcomer length 
Water level in downcomer 
Parallel flow length in tube 
Tube bundle length 
Riser length 

10.94 
5114 (5114) 

2.699 
0.7226 
7.760 
3.243 
33.21 
43.15 
39.79 
26.45 
10.91 
13.17 
6.960 
8.460 
4.640 
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Fig. 1. Optimal solutions and manipulated variables for control implementation. 
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Fig. 2. Basic concept of a receding horizon control method. 
 
 
 
 

 
Fig. 3.  Block diagram of the designed receding horizon controller. 
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Fig. 4. Performance of the proposed controller for the linear model A (low powers). 
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Fig. 5. Performance of the proposed controller for the linear model A (high powers). 
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Fig. 6. Comparison of the proposed controller and the PI controller for the linear model A at low power. 
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Fig. 7. Performance of the proposed controller for the linear model B (low powers). 
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Fig. 8. Performance of the proposed controller for the linear model B (high powers). 
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Fig. 9. Performance of the proposed controller for the nonlinear model (low powers). 
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Fig. 10. Performance of the proposed controller for the nonlinear model (high powers). 
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