2001 추계학술발표회 논문집 한국원자력학회

고온 리튬용융염에서 오스테나이트계 합금의 부식거동에 미치는 Cr 함량의 영향

Effect of Cr content on Corrosion Behavior of Austenitic Alloys in Hot Lithium Molten Salt

조수행, 오승철, 신영준, 박성원 한국원자력연구소, 대전광역시 유성구 덕진동 150

> 장준선 대련이공대학 Dalian 116023, China

요 약

오스테나이트계 합금 KSA(Kaeri Superalloy)-10, 20, 30 및 40의 리튬용융염에서의 부식거동 에 미치는 Cr 함량의 영향을 650 ~ 850°C 온도범위에서 조사하였다. 용융염 LiCl에서 KSA-10 합금은 내부산화가 발생하였으며, KSA-20, 30 및 40 합금은 LiCrO₂의 치밀한 보호막이 형성되었 다. 혼합용융염 LiCl-Li₂O에서 KSA-10과 20 합금은 내부산화가 발생하였고, KSA-30과 40 합금 은 LiCrO₂와 Ni의 다공성 비보호막이 형성되었다.

Abstract

The effect of Cr content on corrosion behavior of austenitic alloys, KSA-10, 20, 30 and 40 in lithium molten salts was investigated in the temperature range of $650 \sim 850^{\circ}$ C. In LiCl molten salt, an internal oxidation occurred in KSA-10 and a dense protective oxide coat of LiCrO₂ was formed on the KSA-20, 30 and 40. In the mixed molten salt of LiCl-Li₂O, internal oxidation took place in the KSA-10 and 20. A porous non-protective oxide coat, consisting of LiCrO₂ and Ni, was formed on the KSA-30 and 40.

1. 서 론

용용염 취급기술은 용용염 그 자체가 갖는 물리·화학적 특성, 즉 높은 전기전도성, 고밀집 취급성, 유체특성 등으로 인하여 여러 산업기술에 응용되어 왔으나, 특히 최근에 와서는 제트엔진, 연료전지, 촉매, 태양에너지 그리고 금속정제 등의 기술분야에서 관심의 대상이 되고 있다. 따라서 이러한 고온 용용염을 취급하는 기기 및 구조재료의 부식에 대한 연구도 지속적으로 진행되어 왔 다. 그 중 제트엔진이나 공업용엔진의 가스터빈에서 발생하는 용융황산염 Na₂SO₄에 의한 Ni기 초 합금의 가속산화(accelerated oxidation)에 대한 연구가 많이 진행되었다.^{1~2)} 이러한 가속산화는 용융염이 고온부품의 합금표면에 필름상으로 부착되었을 때 발생하는 현상으로 산화속도가 대기 중에서보다 훨씬 빠르고 다공성 산화피막이 합금내부로 성장하는 특징을 가지고 있다. Goebel ^{3~4)} 등은 이러한 가속산화에 대해 합금표면의 보호성 산화피막(Ni 기 합금의 NiO 혹은 Cr₂O₃)이 용융 염중의 Na₂O와 반응하여 NiO₂²⁻ 혹은 CrO₄² 의 형태로 용용염에 용해되었다가 다시 산화물의 입 자로 석출하여 다공성 피막을 형성하는 염기성 용해(basic fluxing) 기구를 제안하였다. 이와 같이 가속산화는 Na₂SO₄의 산-염기 평형에 의해 용융염에 존재하는 염기성산화물 Na₂O에 의해 발생되 며, 또한 NaNO₃와 Na₂CO₃ 용융염에서도 Na₂SO₄와 같은 부식현상이 나타났다^{5~6)}.

잘 알려진 바와 같이 염화물계 용융염들은 친수성이 강하여 공기중에 노출되었을 때 쉽게 수 화되며 이로인해 발생되는 조성의 변화는 취급재료들의 부식특성에 큰 영향을 줄 뿐만 아니라 산 화물과의 혼합용융염으로 존재하는 경우에는 이들의 복잡한 화학적 거동으로 인하여 부식현상을 가속화 시킬 가능성이 있을 것으로 판단된다. 또한 염화물은 산소를 포함하지 않고, 용융염중 대 기중 산소의 용해도는 극히 낮으므로⁷¹ LiCl-KCl 공융용융염에서 전기화학적으로 측정한 부식속도 는 산화성 불순물 NO₃ 농도에 거의 비례하며 불순물의 농도를 극히 낮게 정제한 용융염에서는 사 실상 부식이 일어나지 않는 것으로 나타났고, 염화물 용융염에서도 산화반응이 주 부식반응임을 제시하였다⁸⁾.

사용후핵연료 차세대관리공정은 혼합리튭용융염계 분위기를 형성한다. 이러한 혼합용융염 분 위기에서 부식시험이 수행되지 않아 재료의 내식성에 관한 자료가 거의 없는 실정이다. 따라서 본 연구에서는 용융염 취급장치 구조재료 개발의 일환으로 기존 스테인레스강, 내열합금강 및 초합금 강의 LiCl 및 LiCl-Li₂O 용융염계에서 부식특성을 고찰하여 도출한 자료를 기초로 한 용융염 부식 억제형 합금을 설계하여 LiCl 및 LiCl-Li₂O 용융염계에서 부식거동에 미치는 Cr 함량의 영향을 고찰하였다.

2. 실험방법

본 연구에 사용한 실험용 합금의 화학조성을 Table 1에 나타냈다. 부식시험은 실험실적 고온 부식시험방법 중의 하나인 도가니시험(crucible test)방법을 이용하였다. 시편의 크기는 15(W) x 20(H) x 2.5 mm(T)이며, 부식시험 직전에 에머리 페이퍼 1200까지 연마하여 증류수와 아세톤으 로 탈지시킨 후 건조시켜 시편으로 사용하였다. 용융염 LiCl과 혼합 용융염 LiCl-Li₂O를 각각 22g 씩 도가니에 넣고 시편을 완전 침적시켜 부식시험을 행하였다. 부식환경온도는 650, 750 및 850℃ 를 선택하였으며, 부식시간은 25 ~ 75시간에서 시험을 행하였다. 시험 종료 후 KSA-10 시편은 10% H₂SO₄, KSA-20, 30 및 40 시편은 10% HNO₃ 용액으로 초음파 세척하여 부식물을 제거하고 증류수와 아세톤으로 세척한 후 건조시켜 무게변화를 측정하였다. 본 실험에서 사용한 합금들은 밀도에서 큰 차이가 없으므로 단위면적당 무게변화를 부식속도로 표시하였다. 부식생성물의 분석, 미세조직 관찰을 위해 전자현미경, X선 회절분석기 및 EPMA를 사용하였다.

Table 1. Chemica	l composition	of	alloys
------------------	---------------	----	--------

Alloy	Chemical composition (wt.%)							
	С	Fe	Ni	Cr	Si	Mn	S	
KSA-10	< 0.03	Bal	26	0	<0.5	<0.5	< 0.03	
KSA-20	//	//	27	8	"	"	//	
KSA-30	//	//	27	18	"	"	//	
KSA-40	"	//	29	27	"	"	"	

3. 결과 및 고찰

Fig. 1은 650, 750 및 850℃, 용융염 LiCl에서 25시간 부식시험에 의한 KSA-10, 20, 30 및
40의 무게변화를 나타내었다. Fig. 1에서 보는 바와 같이 Cr 농도가 높은 KSA-30과 KSA-40의
부식속도는 Cr 농도가 낮은 KSA-10과 KSA-20보다 부식속도가 빠르게 나타났다.

Fig. 2에 혼합용융염 LiCl-Li₂O에서 650, 750 및 850℃ 25시간 부식시험에 의한 무게변화를 나타내었다. Fig. 2에서 보는 바와 같이 전반적으로 Cr 농도가 높은 합금의 부식속도가 Cr 농도 가 낮은 것보다 빠른 것으로 나타났다. Fig. 1과 2를 비교해 보면 용융염 LiCl에 의한 부식에 비 해 혼합용융염 LiCl-25%Li₂O에서 부식속도가 큰 것으로 나타났으며, 용융염 LiCl에서 보다 혼합 용융염에서 온도증가에 따른 부식속도의 증가가 크고, 특히 Cr 농도가 증가할수록 750℃ 이상에 서 부식속도가 급격히 증가하였다. 이러한 결과는 저온에서 합금의 부식속도에 미치는 Li₂O의 영 향은 작고 온도가 높을수록 영향이 큰 것을 의미한다. 이는 염기성 용해반응에 참여하는 것이 Li₂O가 해리되어 형성된 산화물이온 O² 이며, Li₂O의 해리도가 저온에서 낮고 온도증가에 따라 증가하기 때문일 것으로 생각된다.

Fig. 3은 부식환경온도 750℃ 용융염 LiCl에서 합금의 부식에 의한 무게변화와 부식시간과의 관계를 나타낸 것이다. Fig. 3에서 보는 바와 같이 이들 합금의 부식속도는 모두 포물선 법칙을 따르며, 이는 Cr을 포함하지 않는 KSA-10은 부식층은 내부산화(국부부식)의 형태이며, Cr을 포 함한 KSA-20, 30 및 40은 부식층의 치밀한 피막이 보호막의 역할을 하는 것을 의미한다⁹⁾. 이는 Fig. 1에서 보는 바와 같이 부식층의 내부산화(국부부식) 형태와 보호막으로 인하여 부식속도가 느린 것을 알 수 있다.

Fig. 4는 750℃ 혼합용융염 LiCl-Li₂O에서 합금의 부식속도의 시간의존성을 나타낸 것이다. Fig. 4에서 보는 바와 같이 Cr을 포함하지 않은 KSA-10의 부식속도는 포물선 법칙에 가까운 변 화를 나타내었으며, Cr 농도가 낮은 KSA-20의 부식속도는 시간에 따라 둔화하는 것으로 나타났 다. 그러나 Cr 농도가 높은 KSA-30과 40의 부식속도는 직선 법칙을 따르는 것으로 나타났다. 이는 Fig. 2에서 보는 바와 같이 혼합용융염 LiCl-Li₂O에서 KSA-10 및 20은 내부산화(국부부식) 형태에 의하여 부식속도가 느린 것을 알 수 있으며, KSA-30과 40은 다공질적 비보호성 피막의 형성으로 보호막 역할을 하지 못함으로 인하여 부식속도가 빨라지는 것을 알 수 있다.

Fig. 5는 혼합용용염 LiCl-Li₂O에서 Li₂O 농도를 변화시켜 25시간 부식시험에 의한 부식속도 와 Li₂O 농도의 관계를 나타낸 것이다. 750℃에서 혼합용융염 중 Li₂O 농도의 증가에 따라 약 10%까지는 부식속도가 증가 하지만, 그 이상에서는 부식속도가 크게 증가하지 않는 것으로 나타 났다. 용융염에서 산화반응에 직접 참여하는 것이 산화물이온 O²⁻임을 고려할 때⁴⁾, Fig. 5의 결과 는 Li₂O의 해리도에 기인한 것으로 생각된다. 즉 750℃에서 Li₂O의 해리도가 약 10%이며, 10%까 지는 Li₂O의 농도의 증가에 따라 O²⁻ 농도가 증가하여 부식속도가 증가하지만 Li₂O의 농도가 10% 를 초과하면 O²⁻ 농도는 증가하지 않으므로 더 이상 부식속도가 증가하지 않을 것으로 생각된다.

Fig. 6에 용융염 LiCl에서 750℃ 25시간 부식시험한 KSA-10 시편의 단면조직를 나타내었다. Fig. 6에서 보는 바와 같이 부식생성물의 입자가 합금표면 부근에서 석출하는 내부산화(국부부 식)가 발생하였음을 알 수 있었다.

Fig. 7은 750℃에서 25시간 부식시험한 KSA-10 시편표면의 X-선 회절결과를 나타낸 것이다. Fig. 7에서 보는 바와 같이 부식물은 LiFeO2로 판명되었다.

Fig. 8에 용융염 LiCl에서 750℃ 25시간 부식시험한 KSA-30 시편의 단면조직를 나타내었다. Fig. 8에서 보는 바와 같이 치밀한 보호막이 형성되었음을 알 수 있다.

Fig. 9는 750℃에서 25시간 부식시험한 KSA-30 시편표면의 X-선 회절결과를 나타낸 것이다. Fig. 9에서 보는 바와 같이 부식물은 LiCrO2로 판명되었다. 부식층이 보호막을 형성할 때 부식속 도는 LiCrO2 산화층을 통한 Cr의 확산에 율속되어 부식속도가 포물선 법칙을 따라서 느리게 나타 난다고 생각된다.

Fig. 10에 혼합용융염 LiCl-Li₂O에서 750℃, 25시간 부식시험한 KSA-10의 부식층의 단면조 직과 Fe, Ni, O 원소의 선분석결과를 나타냈다. Fig. 10에서 보는 바와 같이 혼합용융염 LiCl-Li₂O에서도 내부산화(국부부식)가 발생하였으며, 부식층에는 Fe 평균농도가 matrix보다 낮 은 것을 알 수 있다. 이는 합금표면 부근에 Fe 농도가 감소하는 것으로 보아 Fe이 선택적으로 부식되는 것을 알 수 있다. Fig. 11은 혼합용융염 LiCl-Li₂O에서 750℃, 25시간 부식시험한 KSA-10의 부식시편을 10% 황산용액으로 세척하여 시편에서 떨어져 나온 부식물의 X-선 회절분석결과를 나타낸 것이다. Fig. 11에서 보는 바와 같이 부식물은 LiFeO2로 판명되었다.

Fig. 12에 혼합용융염 LiCl-Li₂O에서 750℃, 25시간 부식시험한 KSA-20 시편의 단면조직과 Cr, O 선분석결과를 나태내었다. Fig. 12에서 보는 바와 같이 시편 표면부근과 입계에 따라 부식 물이 형성되어 전형적인 내부산화의 양상을 나타냈다. 부식물은 Cr과 O 농도가 높은 것으로 보 아 Cr의 산화물임을 알 수 있다.

Fig. 13은 혼합용융염 LiCl-Li₂O에서 750℃, 25시간 부식시험한 KSA-30 시편의 단면 SEM 조직을 나타냈다. Fig. 13에서 보는 바와 같이 부식형태는 다공성의 밝은색과 어두운색의 두가지 상으로 된 피막이 형성됨을 알 수 있다. 또한 다공성피막이 합금표면에서 내부로 성장하는 것을 알 수 있다. EPMA 분석결과 흰색의 상은 Ni이고, 어두운색은 Cr과 O 농도가 높은 것으로 보아 LiCrO₂임을 알 수 있다.

Fig. 14는 혼합용융염 LiCl-Li₂O에서 750℃, 25시간 부식시험한 KSA-30 시편표면의 X-선 회 절결과를 나타낸 것이다. Fig. 14에서 보는 바와 같이 부식물은 LiCrO₂와 Ni로 나타났다. 이는 EPMA 분석결과와 일치한다.

4. 결 론

1. 용융염 LiCl에서 KSA-10 합금은 내부산화(국부부식)가 발생하고, KSA-20, 30 및 40 합금은 LiCrO₂의 치밀한 보호막이 형성되었으며, 부식속도는 모두 포물선 법칙을 따랐다.

2. 혼합용융염 LiCl-Li₂O에서 KSA-10 및 20 합금은 내부산화가 발생하고, 부식속도는 포물선 법 칙에 가까운 변화를 나타내었다. KSA-30 및 40 합금은 LiCrO₂과 Ni의 다공성 부식층이 형성되 었고, 부식속도는 직선 법칙을 따랐다.

3. 혼합용융염 LiCl-Li₂O에서 부식억제형 합금의 Cr 함량은 10 wt% 이하가 최적일 것으로 판단 된다.

감사의 글

본 연구는 과학기술부 원자력연구개발사업의 일환으로 수행되었으며, 이에 감사드립니다.

참 고 문 헌

- 1. H. J. Grabke, E. Reese and M. Spiegel, Corro. Sci., 37, 1023 (1995)
- 2. Y. S. Zhang and R. A. Rapp, J. Electrochem. Soc., 132, 2498 (1985)
- 3. J. A. Geobel and F. S. Pettit, Met. Trans., 1, 1943 (1970)
- 4. J. A. Geobel and F. S. Pettit and G. W. Goward, Met. Trans., 4. 261 (1973)
- 5. N. S. Bornstein and M. A. DeCrescente, Trans. Met. Soc. AIME, 245, 583 (1969)
- 6. N. S. Bornstein and M. A. DeCrescente, Met. Trans., 2, 2875 (1971)
- 7. M. Spiegel, P. Biedenkipf and H. J. Grabke, Corros. Sci., 39, 1193 (1997)
- 8. 古川和男, 沼田博雄, 防食技術, 29, 185 (1980)
- 9. J. E. Forrest and J. Robertson, Corros. Sci., 32, 541 (1991)

Fig. 1. W eight loss of the alloys corroded in LiCl molten salt for 25 hours, as a function of temperature.

Fig. 2. W eight loss of the alloys corroded in the molten salt of LiC I-Li₂O for 25 hours, as a function of temperature.

Fig. 3. W eight loss of the alloys corroded in LiCl molten salt at 750°C, as a function of time.

Fig. 4. W eight loss of the alloys corroded in the molten salt of LiCI-Li₂O at 750°C, as a function of time.

Fig. 5. Effect of Li₂O concentration on the weight loss of the alloys corroded in the molten salt of LiCI-Li₂O at 750°C for 25 hours.

Fig. 6. Microstructure of KSA-10 corroded in LiCl molten salt at 750°C for 25 hours.

Fig. 7. X-ray diffraction patterns of the oxide scale on KSA-10 corroded in LiCl molten salt at 750°C for 25 hours.

Fig. 8. Microstructure and X-ray line scan of the scale on KSA-30 corroded in LiCl molten salt at 750°C for 25 hours.

Fig. 9. X-ray diffraction patterns of the oxide scale on KSA-30 corroded in LiCl molten salt at 750°C, for 25 hours.

Fig. 10. Microstructure and X-ray line scan of the scale of KSA-10 corroded in the molten salt of LiCl-Li2O at 750oC for 25 hours, (a) Fe, (b) Ni, (c) O.

Fig. 11. X-ray diffraction patterns of the precipitated oxide scale on KSA-10 corroded in the molten salt of LiCl-Li₂O at 750°C for 25 hours.

Fig. 12. Microstructure and X-ray line scan of the subscale on KSA-20 corroded in the molten salt of LiCl-Li2O at 750oC for 25 hours, (a) Cr, (b) O.

Fig. 13. Scanning electron micrograph of cross section of KSA-30 corroded in the molten salt of LiCl-Li₂O at 750°C for 25 hours.

Fig. 14. X-ray diffraction patterns of the oxide scale on KSA-30 corroded in the molten salt of LiCl-Li₂O at 750°C for 25 hours.