KALIMER

A Simple Beam Model Development and Seismic Time History Response Analysis of Upper Internal Structure of KALIMER Liquid Metal Reactor

Abstract

A simple beam model to perform time history acceleration response analysis for the upper internal structure (UIS) of KALIMER is developed based on the analysis results of a detail solid model having a large d.o.f. The simple model well represents the characteristics of the detail solid model. A seismic time history acceleration response analysis are performed and compared with the response spectrum results of the detailed model. For SSE of 0.3g in horizontal direction for a reactor building seismically isolated with 0.5Hz, the maximum horizontal displacement at UIS bottom is calculated by 0.7cm.

1.

1 , (Upper Internal Structure, UIS) (driveline)

2001

General arrangement drawing of the Reactor building (section-AA)

2.

KALIMER

3

[2].

() 195 x 10⁹ N/m² 2.07 x 10⁹ N/m² 7965 Kg/m³ 850 Kg/m³ 0.95 x 10⁻³ m²/sec 0.3 (,D) 가 (,*d*) 가 [5,6]. 가 가 가 3 . 2m. 5.6m 3.6m 100% 가 . /

2.

	/	Hydrodynamic Mass	Added Mass/Unit Length (Kg/m)			
UIS	(m/m)	Coefficient (C_m)	Outside Sodium	Inside Sodium		
	1.40/ 6.87	1.09	1.09M2	1.0M2		
()	0.74/ 6.87	1.03	1.03M1	1.0M1		
()	0.74/ 3.74	1.08	1.08M1	1.0M1		
	1.40/ 3.74	1.33	1.33M2	1.0M2		
	M1 = $\rho_{sodium} \pi / 4*(0.74)^2 = 365 \text{Kg/m}, M2 = \rho_{sodium} \pi / 4*(1.40)^2 = 1308.5 \text{Kg/m}$					
	Cm = $(1+((d/D)^2)/(1-(d/D)^2))$	$)^{2})$				

3.

가

()

4

		<u>X-dir</u>	<u>ection</u>	<u>Y-dir</u>	ection	<u>Z-di</u>	rection
MODE	FREQUE	PARTI.	EFF. MASS	PARTI.	EFF. MASS	PARTI.	EFF. MASS
	NCY	FACTOR		FACTOR		FACTOR	
1	3.49	-121.70	14810.20	-23.65	559.61	0.978	0.95
2	3.93	22.90	524.68	-120.40	14496.60	0.90	0.81
3	9.29	15.54	241.72	2.41	5.84	1.24	1.55
4	14.57	64.96	4220.87	6.63	44.02	-2.13	4.55
5	19.96	-7.40	54.77	73.06	5338.65	8.38	70.32
6	32.81	3.47	12.04	5.47	29.94	-37.08	1374.77
7	34.03	-18.96	359.63	5.51	30.45	-11.91	141.85
8	37.17	-0.80	0.64	-1.06	1.13	105.32	11093.10

4.

4			
Nodes	Coordinate(Z)	Added Mass(X, Y)	Added Mass(Z)
1	0.0		
2	-1.5		
3	-3.0	2733.7	
4	-5.0	3397.5	3761.0
5	-5.5	2568.0	
6	-7.5	1586.7	
7	-9.68	3374.4	7266.4
8	-10.6	2546.9	2348.4

5					
Flements	Nodes	Area(m ²)	L (m ⁴)	$1 (m^4)$	Young
Liemento	Nouco	/ loa(iii)	1 _{XX} (111)	'yy(III')	Modulus
1	1-2	0.108	0.020424	0.020424	
2	2-3	0.108	0.015318	0.01072	
3	3-4	0.108	0.015318	0.01072	165 Gpa
4	4-5	0.1084	0.001945	0.001362	(500°C)
5	5-6	0.1084	0.002918	0.002010	(300 C)
6	6-7	0.1084	0.002918	0.002010	
7	7-8	0.2164	0.022410	0.016007	

5.

	6	6	3	
가 x	2		13%	가

	6.						
		-	X-direction	-	Y-direction		Z-direction
MODE	FREQUE	PARTI.	EFF. MASS	PARTI.	EFF. MASS	PARTI.	EFF. MASS
	NCY	FACTOR		FACTOR		FACTOR	
1	3.45	121.55	14775.5	0.0	0.0	0.0	0.0
2	3.99	0.0	0.0	123.55	15265.7	0.0	0.0
3	16.5	87.188	7601.81	0.0	0.0	0.0	0.0
4	18.63	0.0	0.0	85.895	7377.99	0.0	0.0
5	49.7	-31.034	963.098	0.0	0.0	0.0	0.0
6	58.54	0.0	0.0	29.921	895.256	0.0	0.0
7	61.44	0.0	0.0	0.0	0.0	143.13	20486.8
8	66.19	0.0	0.0	0.0	0.0	0.0	0.0

8

•

7. Maximum Displacement of UIS Bottom for SSE Seismic Load (ATH)

Analysis Method		Isolation (Cm)			Non-Isolation (Cm)	L
	X-Dir.	Y-Dir.	Vertical	X-Dir.	Y-Dir.	Vertical
Enveloped Response Spectrum (ANSYS)	0.72	0.52	0.054	4.12	3.13	0.34
Time History (ABAQUS)	0.567	0.41	0.0044	5.62	3.60	0.003

			가		6.67 cm 가 .	
	Х	5.62cm, Y	3.60cm,	Ζ	0.03mm 가 .	
6.67cm		2.5cm				
0.5Hz					가	

가

6.

•

,

1.	, KALIMER	Preliminary Conceptual Design Repo	rt, , KAERI/TR-1636/2000,
200).		
2.	, , ,		," KAERI/TR-1538/2000,
2	000.		
3.	, ,	KALIMER	," 2000
	,	,2000.	
4. A	NSYS 5.5	, 1999.	
5. S	.S Chen, and Ho Chung	g, Design Guide for Calculating Hydro	odynamic Mass, ANL-CT-76-45, 1976.
6. S	.S. Chen, and Ho Chur	ng, Added Mass and Damping of A V	/ibration Rod in Confined Viscous Fluids, ANL
C	CT-75-08, 1976.		

- 7. , , , , KALIMER
 - , KAERI/TR-1062/98, 1998.
- 8. ABAQUS 5.8 , 2000.