A Study on the Influence of Water Environment and the Model of Fuel Fretting Wear

Abstract

Influence of water environment on fuel fretting wear is investigated by experiment with three different shapes of grid spring. It is shown that the wear in the case of water environment is severer than that in air. Metallurgical analysis is carried out by using a scanning electron microscope (SEM) to see the reason in the point of the size and the detaching mechanism of wear debris. Chemical composition of the worn area is also analyzed with the SEM. As a result, the size of wear debris in the case of water environment is larger than that in air, from which it is regarded that lubricating effect of water enables to decrease adhesion that results in the increase of relative slip motion of the contact surfaces. Nevertheless, further study is thought necessary to clarify the reason more persuasively. On the other hand, the workrate model is applied to the present wear data with shear force instead of conventional normal force. It is distinct to distinguish the difference in the wear coefficient *K* depending on the slip regime. In gross slip, *K* is much higher than that in partial slip. Therefore, it is suggested that the prevailing slip regime is to be identified to predict the fuel fretting failure.

가

, .

가

. ,

, 가가 . , , . . (, / ,)

-4 . , workrate ,

2.

Spring no.	Contact contour	End condition	Contact length intended	No. contacts
1	Flat	Clamped at both ends	2.6 mm	1
2	Flat	Cantilever	1.8 mm	1
3	Concave	Clamped at both ends	5.1 mm	1

2.2

.

[1] () 10, 30, 50, 80, 100, 150 $200\;\mu m$ 10, 30 50 N 가 . . 가 30 N 200 µm . 가 100,000 30 Hz . 3 [3]

가

가

[5]

Archard

.

.

V = KPs . (2)

[6]. 7† .

$$\dot{V} = K\dot{W}$$
, $\dot{W} = \frac{1}{t}\int Pds$. (3)

(3) \dot{V} 7 \dot{W} . K (2)

 m^2/N Pa^{-1} .

Workrate

		,	,				
			가	7	'F		
가				가			
					3		
					5		
						,	
			[10]				
[11]		1	[10]				
[11].		1					
workrate							
4.							
4.1							
1	가						
				2	4		

		"Туре 1"	
	"Туре 2"	(2 4	
Type 2).		
	가 ,		

가 . .

4.2 .

가 ,

가

4.1

.

.

2

[1].

Р	10 N				30 N			50 N			
~	Depth	Volume	Wear	Depth	Volume	Wear	Depth	Volume	Wear		
δ	(µm)	(10^{-6} mm^3)	Туре	(µm)	(10^{-6} mm^3)	Туре	(µm)	(10^{-6} mm^3)	Туре		
10 µm	10.51	62.36	1	7.02	20.24	1	-	-	-		
30 µm	5.30	31.02	1	9.29	32.30	1	9.74	42.89	1		
50 µm	8.08	500.57	2	16.98	83.82	1	2.47	3.10	1		
80 µm	19.11	1258.40	2	20.84	3057.93	2	23.36	198.91	1		
100				20.81	5417 76	2	26.03	5063 47	2		
μm	-	-	-	29.01	5417.70	2	20.03	5005.47	2		
150				30.84	11203 71	2					
μm	-	-	-	39.04	11203.71	2	-	-	-		
200				50.98	22016.01	2					
μm	-	-	-	50.98	22010.01	2	-	-	-		

3.

.

Р		10 N			30 N			50 N	
	Depth	Volume	Wear	Depth	Volume	Wear	Depth	Volume	Wear
δ	(µm)	(10^{-6} mm^3)	Туре	(µm)	(10^{-6} mm^3)	Туре	(µm)	(10^{-6} mm^3)	Туре
10 µm	34.81	627.01	1	7.98	36.39	1	-	-	-
30 µm	15.53	197.21	1	4.71	5.16	1	-	-	-
50 µm	29.76	1733.54	2	10.24	153.90	1	3.34	3.85	1
80 µm	-	-	-	32.25	3942.98	2	13.31	109.08	1
100				22.82	0023.80	2	25.85	3563.80	2
μm	-	-	-	55.85	9023.89	2	23.83	3303.80	2
150				57.65	15367 59	2			
μm	_	-	_	57.05	15507.59	2	-	-	_
200				72 48	28758 87	2			
μm	-	-	-	72.40	20730.07	2	-	-	-

4. 3 .

Р	10 N				30 N			50 N			
<u> </u>	Depth	Volume	Wear	Depth	Volume	Wear	Depth	Volume	Wear		
δ	(µm)	(10^{-6} mm^3)	Туре	(µm)	(10^{-6} mm^3)	Туре	(µm)	(10^{-6} mm^3)	Туре		
10 µm	1	None detected		Ν	None detected		-	-	-		
30 µm	10.51	131.60	1	5.29	7.67	1	-	-	-		
50 µm	9.11	166.00	1	21.48	306.27	1	5.06	7.81	1		
80 µm	-	-	-	25.56	1507.69	2	31.19	427.51	1		
100				20.25	8061.00	n	38.00	7785 63	2		
μm	-	-	-	29.33	8001.99	Z	30.99	//85.05	Z		
150				16 53	12250 10	n					
μm	-	-	-	40.33	15559.10	Z	-	-	-		
200				52 14	25622 82	2					
μm	-	-	-	52.14	23032.82	2	-	-	-		

(ZrO₂) 기

가

.

200 µm 5 . 가 가 (가 가 1 2) . 3) (

5.

	(30 N, 200 μm).									
Spring no.		1		2	3					
Wear	$Depth^{1)}(\mu m)$	Volume ²⁾ (10 ⁻⁶ mm ³)	Depth	Volume	Depth	Volume				
Air ^{a)}	50.98	22016.01	72.48	28758.87	52.14	25632.82				
Water ^{b)}	103.61	70453.19	101.66	92775.42	36.34	31553.63				
b) / a)	2.03	3.20	1.40	3.23	0.70	1.23				

Worn Surface, Air, X500

2.

(a)

(b)

(b)

가

4.3

.

.

•

(24)

•

workrate

, :).

5.

, workrate

3. workrate K

・ フト ・

- 1.
 3
 ,
 2001
 ,
 121.

 2.
 4
 ,
 2000
 ,
 59.

 3.
 ,
 ,
 ,
 17(1) (2001) 33-39.
 59.
- 4. H.C. Meng and K.C. Ludema, Wear, 181-183 (1995) 443-457.
- 5. J.F. Archard, J. Appl. Phys. 24 (1953) 981-988.
- 6. T.M. Frick, T.E. Sobek and J.R. Reavis, ASME Special Publications (1984) 149-161.
- 7. Fuel Assembly Design Manual (1988) Westinghouse Electric Corporation.
- 8. N.P. Suh, Tribophysics (1986) Prentice-Hall.
- 9. P.L. Ko, Wear, 106 (1985) 261-281.

- 10. Hyugn-Kyu Kim, Nucl. Engng. Des., 192(1) (1999) 81-93.
- 11. T.P. Joulin et al., Trans. SmiRT-16 (2001) paper no. 1239.