Pre-conditioned CGNR

Preconditioner

Investigation of Preconditioners for the CGNR Iterative Method in Core Power Monitoring Program based on Least Square Solution

, , ,

150

56-1

		Pre-conditioned CGNR		
		Preconditioner .	Pre-	
conditioned CGNR	Preconditioner	,		
		DIAG preconditioner, IMGS	QR	
factorization	IMGS preconditioner,	BILU	U3D	
preconditioner		. DIAG precondition	oner	
가 가	. Preconditioner 7			

Abstract

.

Preconditioners are investigated to determine the best preconditioner that saves much computing time in the preconditioned CGNR calculation for the normal equation

`2001

composed of the neutron balance equation and the detector signal equation. Since the convergence of preconditioned CGNR depends on the effectiveness of the preconditioner, several different preconditioners such as the DIAG preconditioner composed of diagonal element of normal equation, IMGS preconditioner based on IMGS QR factorization and BILU3D preconditioner used in neutron balance equation solver are examined. The computing time and solutions were compared. The DIAG preconditioner shows the best performance to reduce the computing time by about 50%.

1.

CECOR, INCORE, CARIN [1],[2],[3]

3

[4],[5]. (NBE) (DSE) (NBE) (DSE) [6]. (Normal Equation) , Preconditioned CGNR(Conjugate Gradient, N for Normal and R for Residual) [7]. Preconditioner CGNR Preconditioned CGNR Preconditioner Preconditioner Preconditioned CGNR Preconditioner 2 3 Preconditioned CGNR 4 Preconditioner 4 .

3

.

•

$$\mathbf{M}\boldsymbol{f} = \frac{1}{k_{eff}} \mathbf{F}\boldsymbol{f}$$
(1)

.

가

$$\mathbf{D}\boldsymbol{f} = \mathbf{s} \tag{2}$$

over-

•

.

,

$$\mathbf{A}\mathbf{f} = b \tag{3}$$

$$\mathbf{A} = \begin{bmatrix} \mathbf{M} - \frac{1}{keff} \mathbf{F} \\ \mathbf{D} \end{bmatrix}, \quad b = \begin{bmatrix} q \\ s \end{bmatrix}$$
(4)

Equations)

R

minimize
$$\|b - \mathbf{A} \mathbf{f}\|_2 \iff \text{minimize residual}(=b - \mathbf{A} \mathbf{f})$$
 (5)

$$\mathbf{A}^{\mathrm{T}}\mathbf{A}\mathbf{f} = \mathbf{A}^{\mathrm{T}}b \quad \Leftrightarrow \quad \mathbf{R}\mathbf{f} = c \tag{6}$$

.

$$[(NG+L) \times NG] ? \uparrow A^{T}A (= \mathbf{R}) [NG \times NG]? \uparrow . ? \uparrow$$
$$\mathbf{R}f = c ? \uparrow$$

가 . $\mathbf{A}\mathbf{f} = b$

Preconditioned

(6)

.

Preconditioner

•

3. Preconditioned CGNR

CGNR

preconditioned CGNR . preconditioned residual z_i $z_i = \mathbf{M}^{-1} y_i$. \mathbf{a}_i . $\mathbf{a}_i = (z_i, y_i)/(\mathbf{A}^{\mathrm{T}} \mathbf{A} p_i, p_i) = (z_i, y_i)/(\mathbf{A} p_i, \mathbf{A} p_i)$ (7) $w_i = \mathbf{A} p_i$ Algorithm .

Algorithm : Preconditioned CGNR

1. Compute
$$r_0 = b - Ax_0$$
, $y_0 = A^T r_0$, $z_0 = M^{-1} y_0$, $p_0 = z_0$

2. For i =0,..., until convergence Do:

3.
$$w_i = \mathbf{A}p_i$$

4.
$$\mathbf{a}_i = (z_i, y_i) / \|w_i\|_2^2$$

5.
$$x_{i+1} \coloneqq x_i + \boldsymbol{a}_i p_i$$

$$6. r_{i+1} = r_i - \boldsymbol{a}_i W_i$$

$$7. y_{i+1} = \mathbf{A}^{\mathsf{T}} r_{i+1}$$

8.
$$z_{i+1} = \mathbf{M}^{-1} y_{i+1}$$

9.
$$\boldsymbol{b}_i = (z_{i+1}, y_{i+1})/(z_i, y_i)$$

10.
$$p_{i+1} := z_{i+1} + \boldsymbol{b}_i p_i$$

4. Preconditioner

DIAG preconditioner

A ^T A			DIAG preconditioner		가
		NBE system	DSE system	Α	column vector
	preconditioner	Μ	d_i	, precondi	tioned residual z_i
$z_i = y_i$	d_i				

IMGS preconditioner

IMGS preconditioner A	^T A	, A	drop set P
upper triangular matrix R	unitary matrix Q	$\mathbf{M}(\approx \mathbf{A}^{\mathrm{T}}\mathbf{A})$	

•

[7]. **Q**

,

$$\mathbf{Q}^{\mathrm{T}}\mathbf{Q} = \mathbf{I} \tag{8}$$

$$\mathbf{A}^{\mathrm{T}}\mathbf{A} = \mathbf{R}^{\mathrm{T}}\mathbf{Q}^{\mathrm{T}} \cdot \mathbf{Q}\mathbf{R} = \mathbf{R}^{\mathrm{T}}\mathbf{R}$$
(9)

		Α	[mxn], m>n	Q	[mxn]	R	[nxn]
. Drop set	Р	incomplete	R			drop po	osition
$P_n =$	$= \{(i, j) 1 \le$	$i < j \le n\}$.					
Drop set P	Α	QR factorization	Algorithm				

Algorithm [Q, R] = IMGS [A, P]

For k=1, 2, 3, ..., n, (column vector index)

(1)
$$r_{kk} = ||a_k||_2$$

(2) $q_k = a_k / r_{kk}$
for j=k+1, k+2, ...,n
(3) $r_{kj} = \begin{cases} 0 & (k, j) \in \mathbf{P} \\ q_k^T a_j & (k, j) \notin \mathbf{P} \end{cases}$

$$(4) \ a_j = a_j - q_k r_{kj}$$

endfor

endfor

Drop set P facto		factorization		Ċ	lrop tolerance
e (2%)	dynamic metho	bd		
drop set	static method 7	ŀ.		d	lrop set
		. :	가 coupling	3	
	R			1	Α
east, south,	top nodes column v	vector drop set	, Q	R factorizati	on
upper diagonal	R 4 diago	onal elements(own, east,	south, top)		
Precondi	tioner $\mathbf{M} (\approx \mathbf{A}^{\mathrm{T}} \mathbf{A})$			R	, R
가	Preconditioned	CGNR algorithm	preconditione	ed residual vec	ctor z
	forward substitution	backward substitution			

<< Solving Strategy for $z : z = M^{-1}y >>$

1.
$$y = M^*z = (R'R)^*z = R'^*(R^*z)$$
, let $v = R^*z$

y = R'v - v = inv(R')*y

solve v by forward substitution

3. $v = \mathbf{R}^* z \longrightarrow z = inv \mathbf{R} * v$

solve z by backward substitution

BILU preconditioner

2.

radial coupling submatrix A axial coupling lower sub	omatrix L,
upper submatrix U incomplete LU factorization 3	
[9]. NBE system preconditioner , $\mathbf{A} = \mathbf{A}^{T}$	A
DSE system 7 preconditi	oner

prediction mode

.

DIAG preconditioner

References

- [1] Final Safety Analysis Report for YGN Unit 3 & 4, Korea Electric Power Company.
- [2] Final Safety Analysis Report for YGN Unit 1 & 2, Korea Electric Power Company.
- [3] A. J. Harris and K. A. Jones, "INCORE3 Program," WCAP-8492, March 1975.
- B. O. Cho et al., "Core On-line Monitoring and Protection Aid Surveillance System COMPASS for SMART," KAERI/TR-1149/98, 1998.
- [5] L. R. Pogosbekyan and D. A. Lysov, "Quasi Solution of Radiation Transport Equation," *Nucl. Sci.* Eng., 121, 345-351 (1995).
- [6] , " CGNR ," 2000
- [7] Yousef Saad, Iterative Methods for Sparse Linear Systems, PWS Publishing Company, p.318,(1996).
- [8] X. Wang, K. A. Gallivan, and R. Bramley, "CIMGS: AN INCOMPLETE ORTHOGONAL FACTORIZATION PRECONDITIONER," SIAM J. SCI. COMPUT. VOL. 18, NO. 2, PP. 516-536, MARCH 1997.
- [9] H. G. Joo, G. Jiang, and T. J. Downar, "Stabilization Techniques for the Nonlinear Analytic Nodal

5.

Method," Nucl. Sci. Eng., 130, 47 (1998).

1. Preconditioner Preconditioned CGNR

BU	Power	Dradiated		Preconditioned CGNR	NR	
(MWD/KgU)	(%)	Predicted	CGNK	BILU	IMGS	DIAG
	Avg Error(%)					
			8	- /		
0.000	20.0	1.05	0.19	0.68	0.19	0.19
1.423	80.0	1.28	0.15	0.81	0.15	0.15
2.357	100.0	1.41	0.15	0.90	0.15	0.15
2.880	100.0	1.52	0.16	0.96	0.16	0.16
3.703	100.0	1.52	0.18	0.98	0.18	0.18
5.030	100.0	1.35	0.18	0.88	0.18	0.18
5.804	100.0	1.30	0.17	0.84	0.17	0.17
6.601	100.0	1.23	0.16	0.79	0.16	0.16
8.082	100.0	1.16	0.15	0.75	0.15	0.15
8.844	100.0	1.14	0.15	0.74	0.15	0.15
13.418	100.0	1.11	0.14	0.72	0.14	0.14
CPU Time(sec.)						
0.000	20.0		3.93		4.20	1.75
1.423	80.0		4.07		4.27	1.55
2.357	100.0		4.22		4.62	2.01
2.880	100.0		4.86		4.36	1.95
3.703	100.0		4.67	Not	4.46	1.79
5.030	100.0		4.59	converged	4.40	1.70
5.804	100.0		4.56	0	4.39	1.70
6.601	100.0		4.21		4.24	1.63
8.082	100.0		4.51		4.04	1.44
8.844	100.0		3.67		4.40	1.57
13.418	100.0		3.95		4.07	1.45

* LS Method(1) : 1 node/FA , PC-733MHz WIN2000-OS Machine

1. Node Index and Elements of Matrix A