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Abstract

Analytic solutions of the multigroup discrete ordinates transport equation with linearly

anisotropic scattering and �ssion source for multi-layered slab problems are obtained by using

the in�nite medium Green's function (IMGF) and Placzek's lemma. In this approach, the

in�nite medium Green's function is derived analytically by using the spectral analysis for the

multigroup discrete ordinates transport equation and its transposed equation, and this in�nite

medium solution is related to the �nite medium solution by Placzek's lemma. In eigenvalue

problems having �ssion source, complex eigenvalues can occur. As such equations involve the

k eigenvalue as a non-linear parameter, to obtain criticality Newton's chord method combined

with bisection is used. The resulting equation leads to an exact relation that represents the

outgoing angular 
uxes in terms of the incoming angular 
uxes and �ssion source for each

slab. For heterogeneous problems having multi-layered slabs, the slabs are coupled through

the interface angular 
uxes. Since all derivations are performed analytically, the method gives

exact solution with no truncation error. After the interface angular 
uxes are calculated by

using an iterative method, the continuous spatial distribution of the angular 
ux (i.e.analytic

solution) in each slab is given straightforwardly in terms of the IMGF and the boundary

angular 
uxes. Therefore, in our method, the number of meshes that is equal to the number

of the homogeneous slabs is suÆcient.

I. Introduction

Since the neutron transport equation cannot be solved analytically even in slab geometry,

much attention has been given to the problem of obtaining accurate numerical methods of

the transport equation. The discrete ordinates approximation of angular variable and the

multigroup approximation of energy variable are the most direct approach to simplify the

complexities of the transport equation. Recently, some authors have devised exact solution
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methods with no truncation error for solving the multigroup discrete ordinates problems

in slab geometry. First, Barros and Larsen[2][3] have developed the spectral Green's func-

tion(SGF) method where an exact relation between cell-edge and cell-average angular 
uxes

is derived by using a spectral analysis (i.e., obtaining eigenfunctions). Second is a direct

method by using the Laplace transform[4] and its inverse transform.

In this paper, a new method that gives analytic solutions (with no spatial truncation

error) of the slab geometry multigroup discrete ordinates transport equation with linearly

anisotropic scattering and multiplying �ssion source is presented. This is an extension of

the one group method[5] by Hong and Cho. The method is based on the in�nite medium

Green's function and Placzek's lemma[6]. The IMGF is derived analytically by using the

spectral analysis for the multigroup discrete ordinates transport equation and its transposed

equation. The in�nite medium solution is related to the �nite medium solution through the

Placzek's lemma. This procedure gives an exact relation that represents the outgoing angular


uxes in terms of the incoming angular 
uxes and �ssion source for each slab. In multi-slab

problems, the slabs are simply coupled through the interface angular 
uxes. Therefore, the

interface angular 
uxes are obtained, the continuous distribution of the angular 
ux in each

slab are calculated straightforwardly with IMGF.

Our method is new in the area of the discrete ordinates transport methods. In case of

the continuous angle, Case[7] originally obtained IMGF of the one group transport equation

with singular eigenfunctions while the evaluation of IMGF is diÆcult and numerical results

were not readily available. Second, the Case's IMGF has been used in the FN [8] and CN [9]

methods that gives very accurate solutions. In case of multigroup problems, the IMGF is

obtained by using the Fourier transform[9] and its inversion rather than Case's methodology.

A similar approach by Ganapol[10][11] was recently performed to obtain highly accurate

solution (analytic benchmark solution) of the one group transport equation. However, to our

knowledge, IMGF of the slab geometry multigroup discrete ordinates transport equation with

�ssion source has not been derived and used to solve multi-slab problems. Therefore, the key

feature of our approach is the analytical derivation of IMGF of the multigroup slab geometry

discrete ordinates transport equation with linearly anisotropic scattering and multiplying

�ssion source problem and its e�ective use in generating the analytic solutions for multigroup

multi-slab problem. In eigenvalue problems having �ssion source, purely complex eigenvalues

can occur. As such equations involve the k eigenvalue as a non-linear parameter, to obtain

criticality Newton's chord method[12] with bisection is used.

II. Theory and Methodology

II.1. Spectral Analysis

The multigroup slab geometry discrete ordinates transport equation with linearly anisotropic

scattering and �ssion source is described by

�m
d~ m(x)

dx
+�~ m(x) = �s0

~�(x) + 3�m�s1
~�1(x) +

1

keff
��f ~�(x); (1)

where the vector ~ m has components  g;m which are the angular 
uxes for each energy group

g and directionm, the vector ~� has components �g which are the scalar 
uxes for each energy
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group g and the vector ~�1 has components �1;g which are the net currents for each energy

group g. In Eq.(1), the scattering matrix(�s0) that represents the isotropic component of the

scattering. The scattering matrix(�s1) that represents the linearly anisotropic component of

the scattering can be similarly given and the diagonal matrix � has components that are the

total macroscopic cross sections for each energy group. In addition, �f is the group �ssion

cross section, � is the average number of prompt neutrons emitted per �ssion and k is an

eigenvalue. We will perform a spectral analysis of the SN equation Eq.(1) to obtain the

eigenfunction, Eq.(1) is considered :

�m
d~ m(x)

dx
+�~ m(x) = (�s0 +

1

keff
��f )~�(x) + 3�m�s1

~�1(x)

= ��s0
~ m(x) + 3�m�s1

~�1(x); (2)

where ��so is combined �ssion cross section term and isotropic component of the scattering.

We seek solution of the following form [13] :

~ m(x) = e�x=� ~��(�m): (3)

Substituting Eq.(3) into Eq.(2) gives

(�
�m

�
I+�)~��(�m) = ��s0

~N0(�) + 3�m�s1
~N1(�); (4)

where ~N0(�) =

NX
m=1

!m~��(�m) and ~N1(�) =

NX
m=1

!m�m~��(�m).

After some algebraic procedures with Eq.(4), the following eigenvectors are obtained :

~N0(�) =

NX
m=1

!m(�
�m

�
I+�)�1��s0

~N0(�)

+ 3

NX
m=1

!m�m(�
�m

�
I+�)�1�s1

~N1(�);

~N1(�) = �(�� ��s0)
~N0(�):

(5)

The eigenvalues � are determined by the following characteristic equation :

det[I�

NX
m=1

!m(�
�m

�
I+�)�1��s0

� 3�

NX
m=1

!m�m(�
�m

�
I+�)�1�s1�(�� ��s0)] = 0;

(6)

where det means the determinant of a matrix. Eq.(6) is a polynomial of G � N 'th degree

and its roots(�) are the eigenvalues of the G-group discrete ordinates problem (i.e., Eq.(2)).

The roots are symmetrically distributed around the origin due to symmetry of the Gauss

Legendre quadrature set. In practical problem, eigenvalue problems having �ssion source, the

eigenvalues consists of real and purely complex.
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Since the orthogonality of the eigenvectors was eÆciently used in analytically deriving the

IMGF of the one group problems, a similar property is devised in the multigroup problem.

However, the bi-orthogonality [14] between the eigenvector of the forward problem and eigen-

vector of the transposed problem has been found in the continuous angle case. In this paper,

the bi-orthogonality is derived in a similar fashion for the discrete ordinates transport prob-

lems. The spectral analysis of the transposed equation of Eq.(2) can be performed similarly

as the forward case. The result is given by

(�
�m

�
I+�)~���(�m) = ��Ts0

~N�0 (�) + 3�m�
T

s1
~N�1 (�); (7)

Using Eq.(4) and Eq.(7) gives the following bi-orthogonality :

NX
m=1

!m�m < ~����(�m);
~���(�m) >=M��Æ�� ; (8)

where Æ�� is the Kronecker's delta, < � > means the dot product.

To evaluate the transposed angular eigenvector (~��(�m)), the transposed eigenvectors

( ~N�0 ;
~N�1 ) must be evaluated. The evaluation of the transposed eigenvectors is similar to that

of the forward eigenvectors ( ~N0; ~N1) and omitted here.

II.2. In�nite Medium Green's Function (IMGF)

An in�nite homogeneous medium having a unit source at origin, emitting in the direction

of �p and with a particular energy of gp is considered. The solution of this in�nite medium

problem is called the in�nite medium Green's function ~Ggp(0; �p;x; �m). The problem is

described as follow :

(�m
d

dx
+�) ~Ggp(0; �p;x; �m) = ��s0

NX
m=1

!n ~G
gp(0; �p;x; �m)

+ �s1(3�m)

NX
m=1

!n�m ~G
gp(0; �p;x; �m) + Æ(x)Æ(�m � �p)~Ægp ;

(9)

where the vector ~Ægp has only one non-zero component of unity at the gp'th position, and

the Æ(�m � �p) is de�ned to satisfy

NX
m=1

!mÆ(�m � �p) = 1. Ggp!g(0; �p;x; �m) represents

the angular 
ux at x for direction �m of energy group g due to the unit source at origin for

direction �p of energy group gp.

For position x 6= 0, the solution must satisfy the homogeneous equation and the following

condition. The �rst condition is the �niteness at in�nity. The second condition that is used

to determine the expansion coeÆcients is the jump condition at the source position. This

condition is derived by integrating Eq.(9) over an in�nitesimal interval around the source

position :

~Ggp(0; �p; o
+; �m)� ~Ggp(0; �p; o

�; �m) =
Æ(�m � �p)

�m
~Ægp : (10)
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With these conditions and bi-orthogonality of the eigenvectors, we obtain the �nal result of

the IMGF with the unit source at x = x0 is given by

~Ggp(x0; �p;x; �m) =

8>>>>>>><
>>>>>>>:

NG=2X
�=1

e�(x�x0)=��

h
~����(�p)

i
gp

M��

~���(�m); x > x0;

�

NGX
�=NG=2+1

e�(x�x0)=��

h
~����(�p)

i
gp

M��

~���(�m); x < x0:

(11)

where [~a]p represents the p'th component of a vector ~a.

II.3. Computational Scheme

In this section, the computational method using IMGF for obtaining the analytic solu-

tion of the multigroup slab geometry discrete ordinates transport equation is derived. First,

consider a homogeneous �nite slab problem with given incoming angular 
uxes at boundaries:

�m
d~ m(x)

dx
+�~ m(x) = ��s0

~ m(x) + 3�m�s1
~�1(x); x 2 [�a; a];

~ m(�a) = ~ inL;m; �m > 0; ~ m(a) = ~ inR;m; �m < 0;

(12)

where a is the half thickness of the slab. We note that the above �nite medium solution ~ m(x)

can be represented in terms of an in�nite medium solution [~ 1m (x)] due to the Placzek's lemma

as follows :

H�(x)~ m(x) = ~ 1m ; H�(x) =

�
1; x 2 [�a; a];

0; otherwise;

�m
d~ 1m (x)

dx
+�~ 1m (x) = ��s0

~ 1m (x) + 3�m�s1
~�11 (x) + �m ~ m(x)[Æ(x + a)� Æ(x� a)];

(13)

where H�(x) is a step function and x 2 [�1;1]. Since IMGF is available, the solution for

the �nite solution can be given by

 p;m(x) =

GX
q=1

NX
n=1

!nG
q!p(�a; �n;x; �m)�n q;n(�a)�

GX
q=1

NX
n=1

!nG
q!p(a; �n;x; �m)�n q;n(a);

(14)

where the indices p and q were used to represent energy group. In Eq.(13), it must be noted

that the �nite solution is equal to the in�nite medium solution for x 2 [�a; a]. Inserting x = a

into Eq.(14) and separating the boundary angular 
uxes into the incoming and outgoing parts

give

 p;m(a) =

GX
q=1

N=2X
n=1

!nG
q!p(�a; �n; a; �m)�n 

in
L;q;n �

GX
q=1

NX
n=N=2+1

!nG
q!p(a; �n; a

�; �m)�n 
in
R;q;n

+

GX
q=1

NX
n=N=2+1

!nG
q!p(�a; �n; a; �m)�n 

out
L;q;n �

GX
q=1

N=2X
n=1

!nG
q!p(a; �n; a

�; �m)�n 
out
R;q;n:

(15)
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Multiplying Eq.(15) with �m[�
�

��(�m)]p and summing over m and p lead to

N=2X

m=1

!m�m < ~����(�m); ~ outR;m > +e�2a=��
N=2X

m=1

!m�m < ~����(��m);
~ outL;m >

=

N=2X

m=1

!m�m < ~����(��m);
~ inR;m > +e�2a=��

N=2X

m=1

!m�m < ~����(�m);
~ inL;m >

� = 1; 2; 3; :::; NG=2

(16)

where < � > means the dot product. In deriving Eq.(16), the bi-orthogonality of the eigen-

vectors was used. It must be noted that Eq.(16) can easily treat arbitrarily �ssion source.

Similarly, the corresponding equation for x = �a can be derived. In case of real eigenvalue

equal to �xed source problem.[1] So we must give attention to purely complex eigenvalues.

If we substituting complex eigenvalue into two equations, its are in agreement with real

equations. Because two equations relate to precisely complex conjugate. If �p is complex

eigenvalue(�p = i�p), we can write as following

~���p(�m) = Re[~���p(�m)] + iIm[~���p(�m)]; (17)

where �p is real. Substituting Eq.(17) into Eq.(16), we can obtain real part and imaginary

part. Real part as follow :

N=2X
m=1

!m�m < Re[~���p(�m)];
~ outR;m > +cos

2a

�p

N=2X
m=1

!m�m < Re[~���p(�m)];
~ outL;m >

+ sin
2a

�p

N=2X
m=1

!m�m < Im[~���p(�m)];
~ outL;m >

=

N=2X
m=1

!m�m < Re[~���p(�m)];
~ inR;m > +cos

2a

�p

N=2X
m=1

!m�m < Re[~���p(�m)];
~ inL;m >

� sin
2a

�p

N=2X
m=1

!m�m < Im[~���p(�m)];
~ inL;m >;

(18)

where imaginary part as follow :

N=2X
m=1

!m�m < Im[~���p(�m)];
~ outR;m > �cos

2a

�p

N=2X
m=1

!m�m < Im[~���p(�m)];
~ outL;m >

+ sin
2a

�p

N=2X
m=1

!m�m < Re[~���p(�m)];
~ outL;m >

= �

N=2X
m=1

!m�m < Im[~���p(�m)];
~ inR;m > +cos

2a

�p

N=2X
m=1

!m�m < Im[~���p(�m)];
~ inL;m >

+ sin
2a

�p

N=2X
m=1

!m�m < Re[~���p(�m)];
~ inL;m >;

(19)
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these equations can be written in the following vector form :

A~ out = B~ in; (20)

where ~ out and ~ in consist of the cell-edge outgoing and incoming angular 
uxes for the �nite

slab respectively, and both A and B are GN �GN matrices.

The problems having heterogeneous materials (consisting of multilayered homogeneous

slabs) can be solved by an iterative scheme on the interface angular 
uxes (e.g., red-black

iteration with one-node block inversion) with the continuity of the interface angular 
uxes.

Finally, if all the cell-edge angular 
uxes are calculated, the analytic distribution for each

homogeneous slab is easily calculated by Eq.(11) and Eq.(14). The resulting equation for the

case of �ssion and isotropic source is explicitly given by

 p;m(x) =

NG=2X
�=1

1

M��

e
�

(x+a)

�� [~���(�m)]p

GX
q=1

NX
n=1

!n�n[~�
�

��(�m)]q L;q;n

�

NG=2X
�=1

1

M��

e
(x�a)

�� [~����(�m)]p

GX
q=1

NX
n=1

!n�n[~�
�

���(�m)]q R;q;n:

(21)

Since all derivations except the discrete ordinates approximation are analytic, Eq.(21) is the

analytic solution of the multigroup discrete ordinates transport equation in slab geometry. For

the case of general source without uniform and isotropic assumptions, the analytic solution

can be also written down but omitted here. In Eq.(21), it must be noted that this equation

has both the incoming angular 
uxes and the outgoing angular 
uxes at the boundaries of a

homogeneous slab. If only region averaged scalar 
uxes are required, the use of the balance

equations is more convenient than the use of Eq.(21).

III. Scalar Flux and Multiplication Factor k Calculation

From the multigroup slab geometry discrete ordinates transport equation with linearly anisotropic

scattering and �ssion source, we can derived scalar 
ux as

~��i =
1

hi
(����s0)

�1(~Lin
i� 1

2

+ ~Lin
i+ 1

2

); (22)

where

~Lin
i� 1

2

=
X
�m<0

!j�mj~ m;i+ 1
2
�

X
�m>0

!j�mj~ m;i+ 1
2
;

~Lin
i+ 1

2

=
X
�m>0

!j�mj~ m;i� 1
2
�

X
�m<0

!j�mj~ m;i� 1
2
:

(23)

We can change the matrix structure. So we modify Eq.(20) by using LU decomposition.

~ out = H(keff )~ 
in: (24)

To improve on the keff value convergence, we apply the method by Maiani and Montagnini

[12] . In Fig.1, we can make a coupling iteration scheme. Then we can make a matrix with
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ψ1
+

ψ1
− ψ2

+

ψ2
−

ψ3
−

ψ3
+ ψ4

−

21 3

ψ4
+

Figure 1: Coupling iteration

incoming and outgoing angular 
ux term :0
BBBBBB@

 +
1

 �2
 +
2

 �3
 +
3

 �4

1
CCCCCCA

=

0
BBBBBB@

a 0 0 0 0 0

0 0 1 0 0 0

0 1 0 0 0 0

0 0 0 0 1 0

0 0 0 1 0 0

0 0 0 0 0 a

1
CCCCCCA

0
BBBBBB@

 �1
 +
2

 �2
 +
3

 �3
 +
4

1
CCCCCCA
; (25)

which can be written in the following vector form :

~ in =M �
~ out; (26)

where M means a coupling matrix. a is determined by boundary condition. From Eq.(24)

and Eq.(26), we obtain

 in =MH(k) in: (27)

Nontrivial solutions of Eq.(27) do exist, but only in correspondence with particular values

of the parameter keff involved in the H(k) matrix elements. We have, in fact, a non-linear

eigenvalue problem

 in = �(k) in; (28)

where �(k) = MH(k). The solution technique consists in considering keff as a control

parameter for the following auxiliary linear eigenvalue problem :

� in = �(k) in; (29)

and looking for those values of keff which are such that an �-eigenvalue equals unity.

To continue the argument we shall assume that the partial currents are given in terms of

point values. It is thus clear that the matrix �(k) is non-negative (this follows directly from

the physical meaning of its elements). Hence, by the theorem of Frobenius, �(k) has a positive

eigenvalue �, the fundamental eigenvalue, which exceeds the real part of any other eigenvalue.

To � there corresponds a unique, non-negative fundamental eigenvector  in. Thus we may

limit ourselves to the fundamental eigenvalue and eigenvector and simply look for the roots

of the transcendental equation

�(k) = 1: (30)
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As �(k) turns out to be a monotonic function of k, Eq.(30) has a unique root, which corre-

sponds to the value of the e�ective multiplication constant for the system under study. The

research for � is performed by the following iterative scheme :

(n+1) ~ in = �(k)(n) ~ in;

�(n+1) =

(
< (n+1) ~ in; (n+1) ~ in >

< (n) ~ in; (n) ~ in >

) 1
2

:
(31)

Here, < ; > denotes the scalar product. When convergence is attained, we must inspect �(k).

If �(k) = lim
n!1

�(n) thus found is > 1(< 1) the parameter k must be increased(decreased).

Newton's chord method is used in order to allow � to go to unity. To advance the speed of k

convergence, we used bisection method.

IV. Numerical Tests and Results

To test our method, two benchmark problems of two-energy group model are considered.

ONEDANT set down as reference solution. And all problems were calculated for various mesh

size. The �rst test problem is a heterogeneous slab of 20cm thickness with linearly isotropic

�ssion source. This problem consists of two regions. The left region (fuel), 10cm thick, has

�1 = 0:3, �2 = 1:0, �0;1!1 = 0:27, �0;1!2 = 0:01, �0;2!1 = 0:001, �0;2!2 = 0:9. This has a

�ssion source of ��f1 = 0:0095, and ��f2 = 0:165. The right region (water), 10cm thick, has

�1 = 0:401, �2 = 1:3, �0;1!1 = 0:32, �0;1!2 = 0:08, �0;2!1 = 0:002, �0;2!2 = 1:29. To solve

this problem, the S4 Gauss-Legendre quadrature set with a pointwise convergence criterion

10�6 is used. It must be noted that our method only one mesh to �nd all information for this

problem. For comparison, ONEDANT with a suÆciently �ne mesh division (100 meshes) is

applied to this problem. Figure 2 show scalar 
ux as the slab distance changes. In Table 1,

k values and computation times are compared. The numerical tests show almost the same

about k. And the computation times now refer to a Pentium III 600 MHz PC.

Second problem is a heterogeneous slab of 100cm thickness with linearly anisotropic �ssion

source. As in Figure 3, this problem consists of three regions.

Table 1: Speedup results at each problem

Pro.No IMGF B.Ma ONEDANT

18047b 74 20

1 23:57c 0.1 0.01

0:819595d 0.819595 0.819599

0:000488e 0.000488

1463 44 36

2 1.86 0.06 0.08

0.98537 0.98537 0.984852

0.0526 0.0526

a: Bisection Method, b: number of iteration, c: computation time d: keff , e: error(%)
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Figure 2: IMGF vs ONEDANT scalar 
ux of problem 1

The leftmost region (fuel), 10cm thick, has �1 = 0:3, �2 = 1:0, �0;1!1 = 0:27, �0;1!2 =

0:01, �0;2!1 = 0:001, �0;2!2 = 0:9, �1;1!1 = 0:09, �1;1!2 = 0:002, �1;2!1 = 0:0002, �1;2!2 =

0:08. This has a �ssion source of ��f1 = 0:035, and ��f2 = 0:1. The center region (absorber),

10cm thick, has �1 = 0:2, �2 = 3:53, �0;1!1 = 0:18, �0;1!2 = 0:01, �0;2!1 = 0:001, �0;2!2 =

0:53, �1;1!1 = 0:08, �1;1!2 = 0:003, �1;2!1 = 0:0003, �1;2!2 = 0:06. The right region

(water), 80cm thick, has �1 = 0:401, �2 = 1:30, �0;1!1 = 0:32, �0;1!2 = 0:08, �0;2!1 = 0:002,

�0;2!2 = 1:29, �1;1!1 = 0:07, �1;1!2 = 0:003, �1;2!1 = 0:0004, �1;2!2 = 0:2. Our result were

obtained with the S4, Gauss-Legendre quadrature sets and only three meshes corresponding

to the three regions. For comparison, ONEDANT with a suÆciently �ne mesh division (400

meshes) is applied to this problem. Distribution of the scalar 
ux for this problem is shown

in Figure 4.

Reflective VacuumWater

X=0.0 10.0 20.0 100.0 cm

AbsorberFuel

Figure 3: Con�guration of Problem 2

V. Conclusions

Analytic solutions of the multigroup discrete ordinates transport equation with linearly

anisotropic �ssion scattering in slab geometry were obtained by using the in�nite medium

Green's function(IMGF) and Placzek's lemma. The in�nite medium Green's function was
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Figure 4: Scalar 
ux of problem 2

analytically derived by using spectral analysis of the multigroup discrete ordinates transport

equation and its transposed equation. This approach leads to an exact relation in which

the outgoing angular 
uxes are represented in terms of the incoming angular 
uxes and

interior source. In multi-slab problems, the slabs are coupled through the interface angular


uxes. After the interface angular 
uxes are calculated, the analytic solution for each slab

is calculated straightforwardly with IMGF. Therefore, in our method, it is suÆcient that

the necessary number of meshes equal the number of the homogeneous slabs. In eigenvalue

problems having �ssion source, purely complex eigenvalues can occur. So we separated real

from purely complex eigenvalues. Then, we made GN � GN matrices. In this study, we

calculated multiplication factor k and scalar 
ux by using IMGF. For numerical results, we

tested two benchmark problems. The numerical tests show that our method gives exact

analytic solution of the multigroup discrete ordinates transport equation in slab geometry.

Numerical tests show that the IMGF and ONEDANT provide basically the same scalar 
ux

and multiplication factor.
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