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Abstract

Handling the highly anisotropic scattering of fast neutrons with conventional methods

usually means that high-order Legendre expansions are necessary to obtain correct angu-

lar 
uxes. This drawback in standard transport calculations is avoided by applying the

Boltzmann-Fokker-Planck (BFP) equation approach which has been used in both neutral

and charged-particle transport problems.

Previously, Caro and Ligou, and Morel have introduced Fokker-Planck decomposition

methods, which decompose elastic scattering cross section into forward-peaked and smooth

components.

A new method for decomposing scattering cross sections for Boltzmann -Fokker-Planck

equation is presented. We start from the basic data �s(�)(given by ENDF/B-VI) to get

more correctly determined BFP data. In this method, we use Legendre expansion for smooth

component and exponential function, which Caro and Ligou used in their paper, for forward-

peaked component. In addition, by using RMS errors and an extra degree of freedom (Y ),

we conserve both moment and scattering cross section.

1. Introduction

When we use the Boltzmann transport equation to treat neutral and charged-particle

transport problems, a Legendre expansion is used to represent scattering cross section with

the assumption that scattering is almost isotropic. However, when we deal with high energy

particle (above �5MeV ), it is hard to get accurate solutions with this assumption since

di�erential scattering cross sections are very anisotropic.

The basic idea of the BFP (Boltzmann-Fokker-Planck) equation approach is to decompose

a highly forward-peaked di�erential scattering cross section into the sum of a forward-peaked

cross section and a smooth or nonpeaked cross section. This approach often gives accurate

solutions at a reasonable computational cost. In principle, this approach is superior to the

pure Boltzmann approach. The smooth cross section should be well represented with a
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Legendre expansion of reasonably low order, and the Fokker-Planck approximation should be

accurate for the forward-peaked cross section, whereas a Legendre expansion of reasonable

order is usually inadequate to represent the complete scattering cross section.

For the BFP equation, it is necessary to decompose a highly forward-peaked di�erential

scattering into a forward-peaked cross section and a smooth or nonpeaked cross section. Over

the last several years, Caro and Ligou, and Morel have introduced Fokker-Planck decompo-

sition methods.

A new approach in this paper is based on the basic data �s(�)(given by ENDF/B-VI) [3][4]

to accurately determine BFP data. In order to obtain an accurate representation of scattering

cross section over the full interval [�1;+1], we make the most of characteristics of exponential

function and Legendre expansion. The exponential function is used for representing forward-

peaked scattering cross section, and the Legendre expansion is used for representing smooth

scattering cross section in that smooth scattering cross section consists of several hills and

valleys. In addition to that, by using RMS errors and an extra degree of freedom (Y ), we try

to conserve both moment and scattering cross section.

Brief descriptions of previous methods, which are C-L method, the moment-based (MB)

method, and the partial-range �tting (PRF) method, are given in Section 2. The details of

the new decomposition method are described in Section 3. Computational results are given

in Section 4, and conclusions are given in Section 5.

2. Brief descriptions of previous methods

2.1 Caro and Ligou's method (C-L method)

Caro and Ligou presented a Fokker-Planck decomposition technique that is completely

de�ned in terms of the Legendre moments available in standard cross-section libraries[1]. In

their method, they use exponential function to represent both forward-peaked cross section

and smooth or nonpeaked cross section.

The basic function is

h(�; �) = �exp[��(1� �)]: (1)

With Eq.(1), forward-peaked cross section is represented as

�
II

s (�) = K
00
h(�; � 00); (2)

and smooth cross section as

�
I

s
(�) = K

0
h(�; � 0); (3)

where K 00
; �

00 and K
0
; �

0 refer, respectively, to the singular and smooth part parameters and

� is angular cosine in center of mass system.

The corresponding Legendre moments:

�s;l = 2�K 00
hl(�

00)| {z }
singular

+2�K 0
hl(�

0)| {z }
smooth

: (4)

The �rst and second term of Eq.(4) are singular and smooth moment, respectively.
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An exponential function is suitable for �tting forward-peaked cross section. However, it

is inadequate for an accurate representation of smooth or nonpeaked cross section.

2.2 Morel's moment-based method (MB method)

This method is quite similar to the C-L method in that the last two moments of the

complete cross-section expansion are used to de�ne the singular component. The fundamen-

tal di�erence between MB method[2] and C-L method is that the moments of the singular

component are given by the Fokker-Planck moments rather than by an exponential function:

�
II

l
= �

II

0 �
�

2
[l(l + 1)]: (5)

There are two parameters in Eq.(5); the zeroth moment of the singular component: �II0
and the restricted momentum transfer: �. Linear equations for these parameters are obtained

by equating �L and �L�1 with �
II

L
and �

II

L�1
, respectively.

Because this decomposition technique is entirely de�ned in terms of the Legendre moments

of the complete cross section, we refer to it as the moment-based (MB) method.

2.3 Morel's partial-range �tting (PRF) method

This cross-section decomposition method[2] is quite di�erent from the previously discussed

methods. This method does not generate the moments of the smooth component from the

moments of the complete cross section, but rather generates them directly from the complete

cross section itself. Morel determines the Legendre moments of the smooth component on the

interval [�1;+1] by doing a least-squares �t on a subinterval [�1; �b], where the parameter

�b is less than unity. The parameter �b is chosen to obtain accurate polynomial �t over the

subinterval and to ensure that �b corresponds to a \small" scattering angle.

To get partial-range smooth coeÆcients, the error in the �t is

Error =

Z
�b

�1

"
�s(�0)�

LX
l=0

2l + 1

2
�lPl(�0)

#2
d�0; (6)

where �s(�0) is given data.

This method is superior to the previous methods in terms of accuracy in charged-particle

case. However, if the cross section behaves irregularly, that is in neutron scattering case, PRF

method cannot give the same superior results as charged-particle case. In other words, it is

hard to predict the behavior of the outside of the interval [�1; �b] with PRF method since

the smooth scattering cross section of full-range expansion is very sensitive to the value of

parameter �b in neutron scattering case.

3. New decomposition method

We now introduce a new method for performing cross-section decompositions. This

method requires cross-section data that may be much less accessible than that available in

standard moment libraries. That is to say, the basic data �s(�) is given by ENDF/B-VI. An

exponential �tting is used for forward-peak scattering cross section, and a Legendre expansion

is used for smooth component. Smooth moment �I
l
and singular moment �II

l
are obtained in-

dependently rather than by subtraction. We also try to conserve both moment and scattering

cross section by minimizing RMS errors of moment and scattering cross section.
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We want to minimize RMS errors of moment and scattering cross section as follows:

RMS for moment:

Min

vuut 1

L+ 1

LX
l=0

�
�l � (�I

l
+ �

II

l
)
�2
: (7)

RMS for scattering cross section:

Min

vuut 1

N + 1

NX
i=0

[�(�i)� (�I(�i) + �II(�i))]
2
: (8)

Smooth component will be discussed �rst, and singular component will be followed.

3.1 Smooth component

In this new method, Legendre expansion is used to deal with smooth component. Smooth

scattering cross section �
I(�) and smooth moment �I

l
are de�ned as follows:

Smooth scattering cross section:

�
I(�) =

LX
l=0

2l + 1

2
�s;lPl(�): (9)

Smooth moment:

�
I

l
= 2��s;l: (10)

We �t both elastic scattering cross section that is based on ENDF/B-VI on the inter-

val [�1; �b] and extrapolation exponential function that is optimized by RMS errors on the

interval [�b;+1] with Eq.(9).

��������
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Figure 1: A degree of freedom, Y .

Parameter �b is obtained by di�erentiating elastic scattering cross section that is based

on ENDF/B-VI.

d

d�

"
�s(E)

2�

NLX
l=0

2l + 1

2
al(E)Pl(�)

#
= 0: (11)
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Among �'s that satisfy Eq.(11), the third value (the second valley from � = 1:0) is de�ned

as �b in this method.

The elastic scattering cross section to �t on the interval [�1; �b] with Eq.(9) is

�(�) =
�s(E)

2�

NLX
l=0

2l + 1

2
al(E)Pl(�); (12)

where �s(E), NL, and al(E) are given in ENDF/B-VI.

The extrapolation exponential function to �t on the interval [�b;+1] with Eq.(9) is

�(�) = K
I
�
I expf�� I(1� �)g; (13)

where KI and �
I are determined as follows. If we use (1; Y ) and (�b; �(�b)) in Fig. 1 with

Eq.(13), then

Y = K
I
�
I expf�� I(1� 1)g; (14)

where Y is varying from 0 to 2:0 to minimize RMS errors, and

�(�b) = K
I
�
I expf�� I(1� �b)g: (15)

Dividing Eq.(15) by Eq.(14),

�(�b)

Y
=

K
I
�
I expf�� I(1� �b)g

KI� I
: (16)

From Eqs.(14) and (16), we can determine � I and K
I for extrapolation exponential func-

tion:

�
I =

1

�b � 1
ln

�
�(�b)

Y

�
; (17)

and

K
I =

Y

� I
: (18)

Let Eq.(9) be equal to Eq.(12) and Eq.(13) for each interval, respectively,

F (�) =

LX
l=0

2l + 1

2
�s;lPl(�); (19)

where

F (�) =

8>>>><
>>>>:

�s (E)

2�

NLX
l=0

2l + 1

2
al (E)Pl (�) ; �1 � � � �b;

K
I
�
I expf�� I(1� �)g; �b � � � 1:

(20)
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Multiplying Eq.(19) by Pk(�) and integrating over �1 to +1, we obtain

Z
+1

�1

F (�)Pk(�)d� =

Z
+1

�1

LX
l=0

2l + 1

2
�s;lPl(�)Pk(�)d�

=
2k + 1

2
�s;k

Z
+1

�1

Pk(�)Pk(�)d�

= �s;k

(21)

Changing index k to l, we obtain

�s;l =

Z
+1

�1

F (�)Pl(�)d�: (22)

With �s;l, we can determine smooth scattering cross section by Eq.(9) and smooth moment

by Eq.(10).

3.2 Singular component

We use an exponential function to �t forward-peaked scattering cross section in this

method since exponential function is suitable for �tting a highly forward peak. We subtract

smooth scattering cross section from ENDF scattering cross section to �t the remainders.

Singular scattering cross section �
II(�) and singular moment �II

l
are de�ned as follows:

Singular scattering cross section:

�
II(�) = K

II
�
II expf�� II(1� �)g: (23)

Singular moment:

�
II

l
= 2�KII

hl(�
II): (24)

where KII and �
II are singular parameters.

To determine KII and �
II , we need two conditions.

� Condition 1:

By subtracting smooth scattering cross section from ENDF scattering cross section, we

obtain singular scattering cross section at � = 1:0:

�
II(1:0) = �(1:0) � �

I(1:0): (25)

� Condition 2:

By subtracting the zeroth moment of smooth component from the zeroth moment of

ENDF, we obtain the zeroth moment of singular component:

�
II

0 = �0 � �
I

0 : (26)

If we use (1; �II(1:0)) from Condition 1 and the zeroth moment of singular component

�
II

0 from Condition 2 with Eqs.(23) and (24) respectively, then we get

�
II(1:0) = K

II
�
II expf�� II(1� 1)g; (27)
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and

�
II

0 = 2�KII
h0(�

II); (28)

where

h0(�
II) = 1� exp(�2� II): (29)

From Eq.(27), we obtain K
II :

K
II =

�
II(1:0)

� II
: (30)

In order to determine � II , we insert Eqs.(29) and (30) into Eq.(28), then we get nonlinear

equation for � II :

�
II
�
II

0 � 2��II(1:0)f1 � exp
�
�2� II

�
g = 0: (31)

�
II can be obtained e�ectively by using Newton's method for solving Eq.(31). After obtaining

the value of � II , it is obvious that we can easily get KII by using Eq.(30).

The restricted momentum transfer is calculated from the moments of the singular com-

ponent as well:

� = �
II

0 � �
II

1 : (32)

An overview of the new method is displayed in Fig. 2.

With , obtain smooth scattering cross
section by Eq.(9) and
smooth moment by Eq.(10).

σ (Ε)σ (Ε)σ (Ε)σ (Ε)I

σσσσI

σσσσ

l

s,l

If Y>2.0

Increase Y from 0 to 2.0.

�
σ (Ε)

l
a ���Get , NL, and from ENDF/B-VI.

Subtract smooth scattering cross section
from ENDF scattering cross section.

We fit remainders with Eqs.(23), and (24).

Estimate RMS error of mement and scattering
cross section by Eqs.(7) and (8).

Plot RMS errors versus Y.
Select optimum Y which

has minimum RMS errors.

Get scattering cross section
and moment for singular

part and smooth part with
optimum Y, respectively.

NO

YES

Determine by Eq.(11).µ
�

Obtain & by Eqs.(17) and (18).ττττ I � I

Obtain by Eq.(22).σσσσs,l

Obtain by solving nonlinear Eq.(31).IIττττ

Obtain by Eq.(30).� II

Determine singular scattering cross section
and singular moment by Eqs.(23) and (24).

σ (Ε)σ (Ε)σ (Ε)σ (Ε)II

σσσσ II
l

Figure 2: The procedure of the new method.
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4. Numerical Tests and Results

4.1 Minimization of RMS errors

In Section 3.1, we introduced extrapolation exponential function. In order to determine

parameters KI and �
I for this function, we suggest an extra degree of freedom (Y ) which is

determined by RMS errors: Eqs.(7) and (8). Doing numerical tests on several isotopes and

energy, graphs of RMS errors of moment and scattering cross section versus Y, that is varying

from 0 to 2.0, have three types of shape.

������
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�
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Figure 3: Three types of RMS error of scattering cross section and moment vs Y .

Dotted line and solid line in Fig. 3 represent RMS errors of scattering cross section and

moment, respectively. This graph of RMS errors can be obtained by using Eqs.(7) and (8)

with varying Y from 0 to 2.0.

In each case, we de�ne Y in the following way.

� Case 1:

We de�ne Y as the average of two Y 's which have minimum RMS errors.

� Case 2:

We de�ne Y as the value which minimizes RMS error of moment.

� Case 3:

We de�ne Y as the value which minimizes RMS error of scattering cross section.

Tested isotopes and energy are shown in Table 1.

Table 1: Tested Isotopes and Energy

Pb-206 U-235 U-238 Pu-239 Pu-240

14MeV Case 1 Case 1

15MeV Case 1 Case 1

16MeV Case 3 Case 1 Case 1

17.5MeV Case 1

20MeV Case 3 Case 1 Case 2 Case 1 Case 1
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As we can see, in the most tests, Case 1 is dominant. However, there are a few cases

which are dominated by Case 2 or Case 3. In the next section, we represent computational

results for each case.

4.2 Computational results

In this section, we present three results of the new decomposition method. We select three

of them from Table 1. The �rst one is U-238 at energy 14MeV for Case 1, the second one is

U-238 at energy 20MeV for Case 2, and the third one is Pb-206 at energy 20MeV for Case

3. The reason for selecting U-238 at energy 14MeV for Case 1 is that we want to compare

C-L method with new method.

In these numerical tests, we use P9 approximation since all smooth moments are set to zero

for l � 10 in �gures for moments. The �b of each case is 0.65, 0.64 and 0.5976 respectively.

We attach ENDF data, which are used for the following three cases, in Table 5.

4.2.1 U-238 for Case 1

0 0.5 1 1.5 2

Y

0.1

0.15

0.2

0.25

R
M

S 
er

ro
r

RMS error of scattering cross section
RMS error of moment

Figure 4: RMS error vs Y .

In Fig. 4, we get two Y 's. One is Y = 0:4 which minimizes RMS error of scattering cross

section, the other is Y = 0:6 which minimizes RMS error of moment. We set Y as average of

two Y 's for this case.

With Y = 0:5, we can determine the following variables in Table 2:

Table 2: The Parameters for Case 1

�
I 5.9330 K

I 0.0843 RMS error of moment 0.0890

�
II 41.9164 K

II 0.3571 RMS error of scattering cross section 0.1311

With the above parameters, we have calculated the moments of both singular and smooth

cross section by using Eqs.(9), (10), (23), and (24). The results are displayed in Fig. 5.(a).

We also display ENDF moment in the same domain to see the conservation of moments.
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(a) Legendre moments of U-238 at 14MeV .

-1 -0.5 0 0.5 1

Scattering Cosine

0.00032

0.0016

0.008

0.04

0.2

1

5

C
ro

ss
 s

ec
tio

n 
(b

ar
n/

sr
.)

ENDF
Singular
Smooth
Total

(b) Reconstructed cross sections by new de-
composition method.

Figure 5: Reconstructed moments and cross sections by new decomposition method.

The sum �l = �
I

l
+ �

II

l
matches well the ENDF moment. This means that our new

approach is quite acceptable. For the restricted momentum transfer, we use the zeroth and

the �rst moment of singular component. The momentum transfer � is so important in the

BFP equation that we need to pay attention to get the correct zeroth and �rst moment of

singular component. In our new approach, we are always able to get correct momentum

transfer since the zeroth moment of singular component is obtained by Eq.(26), even though

we get singular and smooth moment independently.

In Fig. 5.(b), we see that decomposed singular and smooth scattering cross section by

using our new approach. One sees that the main peak and smooth scattering cross section

are well �tted. The ENDF elastic scattering, which is in Fig. 5.(b), uses P18 truncation

to accurately model the whole elastic scattering cross section. However, we use only P9

truncation with almost the same accuracy.

This new approach looks similar to C-L method in that we use exponential function for

singular component. However, a major di�erence is that we use Legendre expansion for

smooth component to get more accurate representation of scattering cross section.

In Fig. 6, we see that the di�erences between the two methods, which are C-L method

and our method. The data in ENDF, C-L method, and our new method are displayed in

the same domain. Both methods �t forward peak well. However, when it comes to smooth

scattering cross section, our new method gives better representation. If we consider ENDF

as reference, the RMS error of both methods give more obvious results.

RMS error =

vuut 1

N

NX
i=1

fPi � P̂ ig
2; (33)

where Pi is scattering cross section, P̂ i is reference, and N is number of check points. We

used 200 check points.

The RMS errors are 0:1645 with C-L method and 0:1311 with our new method. If we
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Figure 6: Total scattering cross section of C-L method and new method.

consider this result, we can say that this new approach is more advanced scattering decom-

position method. In this section, we give more detail explanation since we want to compare

with Caro and Ligou's test result. In the next two sections, we present only our test results.

4.2.2 U-238 for Case 2

0 0.05 0.1

Y
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0.14
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0.2

R
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ro
r

RMS error of scattering cross section
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Figure 7: RMS error vs Y .

In Fig. 7, we get only one Y which minimizes RMS error of moment. From the graph of

RMS error of scattering, we cannot get Y which minimizes RMS error of scattering. As we

de�ne Y in Section 4.1, we use 0:04 as the Y value.

With Y = 0:04, we can determine the following variables in Table 3:

Table 3: The Parameters for Case 2

�
I 3.1875 K

I 0.0125 RMS error of moment 0.0561

�
II 45.7146 K

II 0.5263 RMS error of scattering cross section 0.1012
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The decomposed moment and scattering cross section of U-238 at 20MeV are displayed in

Figs. 8.(a) and 8.(b). The ENDF elastic scattering uses P20 truncation to accurately model

the whole elastic scattering cross section. However, we use only P9 truncation with almost

the same accuracy.
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(a) Legendre moments of U-238 at 20MeV .
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(b) Reconstructed cross sections by new de-
composition method.

Figure 8: Reconstructed moments and cross sections by new decomposition method.

4.2.3 Pb-206 for Case 3
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Figure 9: RMS error vs Y.

In Fig. 9, we get only one Y which minimizes RMS error of scattering. As we de�ne Y in

Section 4.1, we use 0:6 as the Y value.

With Y = 0:6, we can determine the variables in Table 4. The decomposed moment and

scattering cross section of Pb-206 at 20MeV are displayed in Figs. 10.(a) and 10.(b). P15

truncation is used for ENDF to accurately model the whole elastic scattering cross section.

However, we use only P9 truncation with almost the same accuracy.
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Table 4: The Parameters for Case 3

�
I 14.1853 K

I 0.0423 RMS error of moment 0.1299

�
II 34.7759 K

II 0.4375 RMS error of scattering cross section 0.1510

0 5 10 15 20

Legendre order

0

1

2

3

4

L
eg

en
dr

e 
M

om
en

ts
 (

b)

ENDF moment
Singular moment
Smooth moment
Total moment

(a) Legendre moments of Pb-206 at 20MeV .
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(b) Reconstructed cross sections by new de-
composition method.

Figure 10: Reconstructed moments and cross sections by new decomposition method.

5. Conclusions

We have presented a new Fokker-Planck decomposition technique for highly anisotropic

scattering cross section. The C-L method and the MB method construct the moments of

the smooth component directly from the moments of the complete cross section which is a

truncated Legendre expansion. In order to get more accurate BFP data, it is necessary to

start from the basic data �s(�) (given by ENDF/B-VI which is the latest version) like the

PRF method. However, the PRF method is somewhat inadequate to deal with the neutron

scattering cross section since its shape is irregular. In our new approach, we make the most

of characteristics of exponential function and Legendre expansion. The exponential function

is used for representing forward-peaked scattering cross section, and Legendre expansion is

used for representing smooth scattering cross section.

The extrapolation exponential function in smooth component plays an important role to

couple the exponential function and the Legendre expansion. That is to say, an extra degree

of freedom Y , which is introduced in the extrapolation exponential function, is closely related

to conserve scattering moment and scattering cross section as well.

Overall, we conclude that our new approach for decomposition is a good alternative to

the previous decomposition methods. It is superior to the other methods in terms of accuracy

and applicability.
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Table 5: ENDF Data for Each Case

CASE 1 CASE 2 CASE 3

Isotope U-238 U-238 Pb-206

Energy 14MeV 20MeV 20MeV

NL 18 20 15

�s(E) 2.867296 3.496053 3.1818

a0 1.0 1.0 1.0

a1 9.133300e-01 9.328200e-01 9.063900e-01

a2 8.040000e-01 8.819240e-01 8.095800e-01

a3 6.987100e-01 8.156340e-01 7.126500e-01

a4 6.136700e-01 7.462500e-01 6.238000e-01

a5 5.422700e-01 6.730930e-01 5.427000e-01

a6 4.828500e-01 6.000610e-01 4.729000e-01

a7 4.262700e-01 5.259340e-01 4.077900e-01

a8 3.729400e-01 4.543000e-01 3.486600e-01

a9 3.198400e-01 3.833050e-01 2.905300e-01

a10 2.655200e-01 3.161720e-01 2.328400e-01

a11 2.054300e-01 2.514430e-01 1.738100e-01

a12 1.422400e-01 1.920600e-01 1.128300e-01

a13 8.548100e-02 1.381670e-01 5.939900e-02

a14 4.437900e-02 9.321990e-02 2.517700e-02

a15 2.025800e-02 5.794970e-02 7.025800e-03

a16 7.760600e-03 3.430310e-02

a17 2.818900e-03 1.864920e-02

a18 1.108600e-03 1.030530e-02

a19 5.086290e-03

a20 1.725920e-03
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