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Abstract 
 
In this paper, we extend the analytic function expansion nodal (AFEN) method to the 

cylindrical nodes by introducing analytic basis functions in R-Z coordinates and report 
the results of two benchmark problems, one of which is a PBMR core containing a 
truncated cone. 

 
I. Introduction 

 
There is growing interest in developing pebble bed modular reactors (PBMRs)[1]. The 

core of a PBMR typically contains a portion of truncated cone shape in cylindrical 
geometry. This paper reports for the first time development of a modern nodal solver for 
PBMR cores. We extend the current AFEN method[2,3] to treat the cylindrical node 
which arises in the analysis of pebble bed modular reactors. The Laplacian term in the 
diffusion equation has a different form in R-Z coordinates compared with that in 
Cartesian coordinates. Thus, we formulate an AFEN method in R-Z coordinates which 
includes the use of Bessel functions or modified Bessel functions. In addition to the 
rectangular nodes, we also consider triangular nodes. The numerical results obtained to 
test the accuracy indicate the method’s applicability to practical problems. 

 
II. Methodology 

 
II.1 Basis functions 
The AFEN formulation in the R-Z coordinates system starts from the following two-



group diffusion equations in a node: 
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All the notations are standard. For simplicity, we omitted the node index in this section. 
In the AFEN method, the equation is decomposed by introducing a new variable ξ 
defined by  

],[][,][ 21 eeRR == ξφ
!!

,                     (2) 

where µe (µ=1,2) is an eigenvector of ][A  with the corresponding eigenvalues µλ . 

After the transformation, Eq.(1) is decoupled as 
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This equation can be rewritten in the R-Z coordinates as follows: 
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The analytic basis functions of the radial part in this equation are Bessel functions or 

modified Bessel functions depending on the sign of µλ ’s. The analytic basis functions 

of the axial part are identical to those of the Cartesian coordinates system. Thus, we can 

expand ),( rzµξ  by using these analytic basis functions as follows: 
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(5) 
where  

0I  : the first kind modified Bessel function of order 0, 

0K  : the second kind modified Bessel function of order 0, 

0J  : the first kind Bessel function of order 0, 

0Y  : the second kind Bessel function of order 0, 

|| µµ λ=k . 

The coefficients in Eq.(5) can be expressed in terms of nodal unknowns shown in Fig.1. 

In the figure, k is axial node index and i is radial node index. av
ik ,φ

!
 is node average flux, 
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are four edge fluxes.  

 
Fig.1. Nodal unknowns in rectangular node (k,i) 



II.2 Nodal coupling equations 
 
By using Eqs.(2) and (5), we write the interface average currents in r and z direction as 
follows: 
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where 
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After some manipulations, all the currents at the interfaces are expressed in terms of 
nodal unknowns. For example, 
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where M’s are 2x2 coefficient matrices. The first nodal coupling equation is node 
balance equation which is obtained from the integration of the diffusion equation over a 
node, 
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By replacing the currents written in the form of Eq.(7), we obtain an equation for the 

node average fluxes. The second nodal coupling equations for the interface average 

fluxes are obtained by applying the continuity conditions of the currents across the 

interface. The third nodal coupling equations are required to update the edge fluxes. 

These equations are derived on the basis of the source-free condition around an edge. 

By applying this condition, edge flux 11
,ikφ

!
 shared by four nodes is found in the 

following form: 
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where  

matrices.t coefficien 2x2 :s]'[
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As in the conventional nodal methods, the iteration procedure in the AFEN method 
requires two-level iterations (inner and outer) to solve the reactor eigenvalue problem. 
The inner iteration consists of three kinds of sweeps: edge flux sweep, interface flux 
sweep and volume-average flux sweep.  
 
II.2 Treatment of triangular node for the pebble bed modular reactor (PBMR) 

In the analysis of a pebble bed modular reactor, there are some regions which should be 

modeled in triangular nodes. Such a triangular node appears in the lower boundary of 

the pebble bed reactor. To simplify the formulation, we allocate an equal number of 

nodal unknowns to that of a rectangular node, which is shown in Fig. 2. In this case, 
1
,
z
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,
z
ikφ
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 are the two half-line averaged fluxes along an oblique side. 11
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denotes the fulx at the mid-point of the oblique side. Except this, all the procedures of 

the formulation are similar to those of the rectangular nodes. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.2. Nodal unknowns in triangular node (k,i) 
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III. Numerical Results 
 

To show the performance of the newly developed code, two benchmark problems were 
solved. Benchmark Problem I was obtained from the initial core of the two-dimensional 
(R-Z) reactor model given in the Ref. 4. Benchmark Problem II was obtained by 
modifying the lower part of Benchmark Problem I reactor to have triangular nodes by 
removing the reflector region. The core contains a portion of truncated cone shape, that 
typically represents a PBMR core. The reactor configurations are shown in Fig. 3 and 
the cross sections of the regions are given in Table 1.   

Table 2 shows the results of Benchmark Problem I. It shows that even for Case 1 
where the biggest node size is 150 cm ×80 cm, the AFEN method gives accurate results 
in predicting the multiplication factor and the regional average powers. Due to the 
limitation of the computer memory, the results of the VENTURE code are compared 
only with those of Case 3 in AFEN. To compare the relative accuracy between the 
AFEN method and an existing nodal method, Table 3 shows the results of a semi-
analytic nodal code reported in Ref. 5. The results indicate that the radial node size 
should be less than 10cm at least to obtain an acceptable accuracy in the multiplication 
factor when using a semi-analytic nodal method.  

Table 4 shows the results of Benchmark Problem II. The AFEN results of the two 
cases of varying node size are very accurate both in the multiplication factor and in the 
regional average powers. The difference in the regional power becomes larger in the 
lower part of the core. However, the maximum regional power difference in Region 12 
between Cases 1 and 2 is only 0.64%. 
 

 
IV. Conclusions 

 
We developed a modern nodal solution method of AFEN formulation in R-Z 

geometry for analysis of PBMR cores. In addition to the rectangular nodes, we also 
included triangular nodes which can be used to model the truncated cone shape of a 
PBMR core.  The results of two benchmark problems show that the AFEN method 
gives solutions of very high accuracy. 



References 
 

1. A. C. Kadak, D. A. Petti, et al., Idaho National Engineering & Environmental 
Laboratory. Modular Pebble Bed Reactor Project University Research 
Consortium Annual Report, INEEL/EXT-2000-01034, July 2000. 

2. J. M. Noh and N. Z. Cho, “A New Approach of Analytic Basis Function 
Expansion to Neutron Diffusion Nodal Calculation,” Nucl. Sci. Eng., 116, 165 
(1994). 

3. N. Z. Cho and J. M. Noh, “Analytic Function Expansion Nodal Method for 
Hexagonal Geometry,” Nucl. Sci. Eng., 121, 245 (1995). 

4. Argonne National Laboratory. Argonne Code Center: Benchmark Problem Book, 
ANL-7416, Supplement 2 (1977). 

5. 김종경, “R-Z좌표계에 대한 중성자 확산방정식의 해석적 노달전개법 개발 연
구,” 제 4차 신형원자로 연구센터 연구발표회 논문집 – 신형원자로의 노심핵
특성 연구,제 6장, CARR/RCA-9601, 1996.+6 

 
 
 
 
 
 
 
 
 



 

 

(a) Benchmark Problem I          (b) Benchmark Problem II 
 

Fig. 3. Core configurations of the benchmark problems (R-Z view)



Table 1. Macroscopic cross sections of the benchmark problems 

Region Group )(cmDg  )( 1−Σ cma  )( 1
21

−
→Σ cm  )( 1−Σ cmfν  

1,15 1 1.0684E+00 2.0000E-03 2.6000E-02 0.0000E+00 

  2 3.2051E-01 3.3000E-03 0.0000E+00 0.0000E+00 

2,14 1 1.3495E+00 1.0000E-05 1.2000E-02 0.0000E+00 

  2 8.7032E-01 1.9000E-02 0.0000E+00 0.0000E+00 

3,4,11 1 1.3052E+00 2.4399E-03 8.0351E-03 1.1776E-03 

  2 8.8857E-01 1.3063E-02 0.0000E+00 1.3268E-02 

5,12 1 1.3052E+00 2.4399E-03 8.0351E-03 1.1776E-03 

  2 8.8857E-01 1.2623E-02 0.0000E+00 1.3268E-02 

6,13 1 1.3052E+00 2.4399E-03 8.0351E-03 1.1776E-03 

  2 8.8857E-01 1.2183E-02 0.0000E+00 1.3268E-02 

7,8 1 1.3052E+00 2.4399E-03 8.0351E-03 1.1776E-03 

  2 8.8857E-01 1.3453E-02 0.0000E+00 1.3268E-02 

9 1 1.3052E+00 2.4399E-03 8.0351E-03 1.1776E-03 

  2 8.8857E-01 1.2973E-02 0.0000E+00 1.3268E-02 

10 1 1.3052E+00 2.4399E-03 8.0351E-03 1.1776E-03 

  2 8.8857E-01 1.2933E-02 0.0000E+00 1.3268E-02 

16 1 1.2997E+00 2.5639E-03 7.9061E-03 1.2875E-03 

  2 8.7951E-01 1.3065E-02 0.0000E+00 1.4246E-02 

 



Table 2. Results of Benchmark Problem I 
AFEN 

Code 
Case 1 Case 2 Case 3 

VENTURE 

Node Size 
∆r(cm) ×∆z(cm) 

Irregular a 40×37.5 20×18.75  

c
r

b
z NN ×  7×5 14×10 28×20 896×384 d 

effk  (%error e) 0.8671966 
(0.00147) 

0.8671834 
(-5.41E-5) 

0.8671838 
0.8671856 
(0.00020) 

Region Normalized power ( %error e ) 
3 1.2038 (-0.13) 1.2062 (0.07) 1.2053 1.2046 (-0.06) 
4 1.2056 (-0.20) 1.2082 (0.01) 1.2081 1.2065 (-0.13) 
5 1.1746 (-0.28) 0.1770 (-0.08) 1.1779 1.1755 (-0.20) 
6 0.8972 (-0.39) 0.8993 (-0.15) 0.9007 0.8986 (-0.23) 
7 1.7630 (0.10) 1.7639 (0.16) 1.7612 1.7639 (0.15) 
8 1.7516 (0.06) 1.7522 (0.09) 1.7506 1.7521 (0.08) 
9 1.6658 (0.03) 1.6658 (0.03) 1.6654 1.6656 (0.01) 
10 1.2228 (0.13) 1.2214 (0.02) 1.2212 1.2208 (-0.03) 
11 1.2069 (0.25) 1.2048 (0.08) 1.2038 1.2063 (0.21) 
12 1.1762 (0.18) 1.1739 (-0.01) 1.1740 1.1755 (0.13) 
13 0.8984 (0.07) 0.8970 (-0.09) 0.8977 0.8986 (0.10) 
16 0.3932 (-0.06) 0.3932 (-0.07) 0.3935 0.3932 (-0.07) 

a 40, 80, 40 and 40 in the radial direction 
 37.5, 37.5, 112.5, 150, 112.5, 37.5 and 37.5 in the axial direction 

b number of axial nodes 
c number of radial nodes 
d Because the node size of 0.58cm×0.625cm in the FDM calculation is not small enough 

to compare the accuracy of 0.2% in the regional average power, the results of AFEN 
Case 3 are used as the reference. 

e The reference is the results of AFEN Case 3 



Table 3. Multiplication factors obtained from the CYLANEM code[5]  
for Benchmark Problem I 

∆r (cm) 20 20 10 10 Mesh 

Size ∆z(cm) 
Irregular a 

37.5 18.75 37.5 18.75 

effk   

(%error b) 

(%error c) 

0.8633767 

(-0.424) 

(-0.439) 

0.8663588 

(-0.080) 

(-0.095) 

0.8663212 

(-0.084) 

(-0.099) 

0.8669894 

(-0.007) 

(-0.022) 

0.8670472 

(-0.00068) 

(-0.015) 
a 40, 80, 40 and 40 in the radial direction 

 37.5, 37.5, 112.5, 150, 112.5, 37.5 and 37.5 in the axial direction 

b Reference effk  is 0.867053, which was reported in Ref. 4 (FDM calculation with 

node size 8cm×18.75cm). 
c The reference is the results of AFEN Case 3 



Table 4. Results of Benchmark Problem II 
 Case 1 Case 2 

Node Size 
∆r(cm) ×∆z(cm) 

40×37.5 20×18.75 

c
z

b
r NN ×  14×10 28×20 

effk  0.8573390 
(-7.0E-4 d) 

0.8573450 

Region Normalized power 
3 2.3164 (0.11 d) 2.3138 
4 1.9218 (0.12) 1.9195 
5 1.2839 (0.13) 1.2823 
6 0.4628 (0.12) 0.4623 
7 2.0647 (-0.01) 2.0649 
8 1.6910 (-0.02) 1.6915 
9 1.0992 (-0.06) 1.0999 
10 0.3150 (-0.25) 0.3157 
11 0.6054 (-0.32) 0.6073 
12 0.3944 (-0.64) 0.3970 

a 40, 80, 40 and 40 in the radial direction 
 37.5, 37.5, 112.5, 150, 112.5, 37.5 and 37.5 in the axial direction 

b number of radial nodes 
c number of axial nodes 
d % difference of Case 1 from Case 2 
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