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Abstract

A feedback oriented dynamical safety assessment in nuclear power plant is constructed. A
commercial software for System Dynamics, Ventana Simulation Environment (Vensim), is
used to develop a dynamics model for the Auxiliary Feed Water System (AFWS) of
Pressurized Water Reactor (PWR). The 18-month refuel cycle is described for the real
situation. The failure rate is higher when the plant is in zero power state like maintenance,
test, and refueling, which is not well described in conventional Event/Fault Tree based safety
assessment. This also means a human failure rate is high in the standby and shutdown states.
Time Step is introduced for the different time weighted frequency of failure cases. The
Common Cause Failure is affected by Time Step process. The simulation shows dynamically
for the standby-running and shutdown-running of nuclear power plant. The modeling is easily
made by a unique graphic designed method and understood by operator or reviewer well. The
logical and systems thinking is simulated.

1. Introduction

The dynamical modeling of the Nuclear Power Plants (NPPs) is important for the reliability
of systems. The advanced dynamic simulation, System Dynamics, is used for the advanced
reliability assessment tool. The System Dynamics was introduced by professor J. Forrester
[1][2][3] at the Sloan School of Management in MIT around the early of 1960s. This has been
applied for the business and management fields to formulate a dynamical model for social
systems successfully. This was also studied for the fields of Radiological Dispersion [4] and
Human Factor study [5][7]. The Korean peninsula unification model was simulated in the
public magazine [6]. The Auxiliary Feed Water System (AFWS) is frequently tested for the
assessment methodology. The Oconee Unit 3 Nuclear Power Plant in the United States, YGN
Unit 3 & 4, and Kori Unit 3 & 4 are modeled for this research.



The AFWS is used to remove heat released from plant systems, structures, and components
in the closed system. The AFWS cools the safety-related and non-safety related reactor
auxiliary loads. Heat transferred by these components to the AFWS is removed to the
Condensate Storage Tank A and B. The refueling period is 6 weeks and the refueling cycle is
18 months. The dynamical concept is important for the operators who are working in the
plant site. In this paper, more improved methodology is introduced for simulating of time
dependent analysis.

2. Method

In this study, the system success of AFWS is quantified. The main model is incorporated
with the state failures and the start failures in the subcomponents. The ‘Time Step’ is
affecting to all components procedures. The state failures are composed of 7 models and the
start failures are considered as 5 models.

The system success is a Boolean sum of the two run states of train A and B when it has the
Y success logic in Fig. 1. The pumps, steam generators, and valves are correlated for the
AFWS success operating sequences. When the system is in a success condition, the
condensate storage tank water goes to the steam generator.

The events are classified as ‘State’ situation and *Start’ situation. The *State’ means that the
reactor is in the operating situation. Otherwise, the ‘Start” situation means that the reactor is
in the point of operating situation from maintenance, refueling, or any other kinds of stopping
conditions. In this study, ‘State’ models are from Fig. 2 to Fig. 8 as ‘Fails to Start’, ‘Failure
State Train A’, ‘Failure State Train B’, ‘Pump State’, “Valve State’, ‘“NPSH State’, and “‘Not
Enough NPSH’. The *Start’ models are done from Fig. 9 to Fig. 13 as ‘Pump A Start Failure’,
‘Pump B Start Failure’, ‘Pump Independent Failure’, ‘Valve Independent Failure’, and
“Turbine Operated Pump Independent Failure’.

The “Time Step” model in Fig. 14 affects to every model in the ‘State’ and ‘Start” models. It
is 0.02 in the case of refueling and 0.1 in the case of running. Namely, the refueling is
considered for ‘Start” modeling and the running is considered for the ‘State’ modeling. So,
this concept is one of the advantage point in System Dynamics simulation in the NPPs,
because the ‘Time Step” makes the different analysis in the ‘State’ failures and “Start’ failures
each.

3. Results

In Fig. 15, one example of Failure Rate is shown for the ‘Pump A Operator Actuation
Failure Rate’. In this graph, the 2 refueling periods are shown in 72" - 79" week and 150™ -
157" week. So, the ‘Pump A Operator Actuation Failure Rate’ is high when it is refueled. In
the real situation, the failure rates are high in the periods of refueling due to the operator’s
fault. Therefore, the “Time Step’ is short (0.02) in the refueling period, which affects the
higher failure rates in the events.

The Table 1 shows the several events unavailabilities in this model and Table 2 shows the
top event capacity. In the System Dynamics simulation, the unavailability is calculated
following the individual simulation. However, in the conventional method, the event
quantification is based on the real basic data. This study makes the 2 cycles’ simulation in
each 18-month refueling cycle. Total period is 200 weeks, which is reasonable for the study’s



object period. As the result is seen in the Table 2, the system success is 0.975 (97.5%) during
the simulation.

4. Conclusions
The comments for the conclusion of this simulation are as follows.

1. The “Time Step’ is a unique concept of System Dynamics. This ‘“Time Step’ can change the
failure frequency in each event. These events are sorted following the situation of nuclear power
plants. That is to say, the ‘State’ and ‘Start’ situations are easily classified. So, the *Standby-
Running’ and ‘Running-Shutdown’ cases are considered as ‘Start’ events. The higher failure
frequency rates are shown in the ‘Refueling’ and ‘Trip’ cases are affected by “Time Step’.

2. The basic events are weighted by the feedback factor expressed by ‘Time Step’. Feedback
operation is quantified continuously following the NPP’s situation. This is like a metabolism in
the human body in order to keep the designed control condition.

3. The operator of this simulation shows easily the human factor [9] using operator’s time
dependent situation.

4. The Common Cause Failure [10] is calculated by “Time Step’ quantified time variable.

5. The modeling is easily designed using the several commercialized softwares and understood by
operator or reviewer.

6. The availability and capacity are made through the simulation. In conventional PSA, this work
is just done by the operation data.
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Event Freg- Each Events Unavailability
uency (Frequency/Week)

Fails to Start A 76 76/200 = 0.380

Failure State Train A 104 104/200 = 0.640
Failure Event Pump A 76 76/200 = 0.380
Failure Event Valve A 0 0/200 = 0.000
Not enough NPSH in Train A 0 0/200 = 0.000
Pump A Start Failure 66 66/200 = 0.330
Turbine Operated Pump 67 67/200 = 0.335

Independent Failure

Table 1 Event Unavailabilities

Event Freg- Top Event Capacity
uency (Frequency/Week)
System Success 195 195/200 = 0.975

Table 2 Top Event Capacity
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