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Abstract 

The performance of fuzzy neural networks applied to sensor signal estimation strongly depends on the selection 
of input signals. In estimating sensor signals for sensor failure detection, there are usually a large number of input 
signals related to output signal estimation. As the number of input variables increases, the required training time of a 
fuzzy neural network increases exponentially and also there is much possibility which it has wrong information. Thus, 
it is needed to reduce the number of inputs to a fuzzy neural network and moreover, to select the optimum number of 
mutually independent inputs that are able to clearly define the input-output mapping. In this work, to automatically 
select important input signals, an automatic input selection routine that combines the correlation analysis and genetic 
algorithm is got in a fuzzy neural network which estimates a specific relevant signal. Also, since the number of fuzzy 
inference rules depends on that of selected inputs, the number of its rules is decided automatically according to the 
number of inputs. Whether the sensors fail or not is determined by applying the sequential probability ratio test to the 
residuals between the actually measured signals and the signals estimated by the fuzzy neural network. The proposed 
sensor monitoring method was verified by using various sensor signals acquired in Yonggwang unit 3&4 pressurized 
water reactors. 

Index Terms – fuzzy neural network, genetic algorithm, input selection, sensor failure detection, sequential probability 

ratio test 

1. Introduction 

Many artificial intelligence techniques including neural networks and fuzzy inference methods have recently 
been proposed to detect sensor failures in a nuclear engineering field. This work was started in the late 80's by 
Upadhyaya [1,2], was also conducted by Singer et. al. [3], Hines and Uhrig, et. al. [4,5], and Fantoni, et. al [6]. These 
techniques have been known to have the good capability for data-driven plant model identification, especially when 
expert diagnostic knowledge and the prior relation of fault symptom model are not clear. It is experienced that the 
performance of a neural network strongly depends on which input data are used for its output estimation. Non-salient 
input data to an artificial neural network can have even negative impacts on the performance. In recent years, the 
general problem of selecting a proper input set for fuzzy neural networks has been generating a great deal of interest.  

If a large number of input signals are used in the fuzzy neural network, it would require a large amount of time to 
train a fuzzy neural network since the number of the training parameters such as connection weights for neural 
networks and parameters for fuzzy inference system would be extremely large. Thus, it is essential to reduce the 
number of inputs to a neural network and to select the optimum number of mutually independent inputs that are able to 
clearly define the input-output mapping and to select the optimum number of fuzzy inference rules according to the 
selected inputs. Also, by eliminating unimportant sensors and sensor parameters, the cost and time of collecting the 
data can be reduced. Many input selection methods have been developed including principal component analysis 
(PCA), genetic algorithm (GA), and others [7-13]. Although the PCA input selection method can reduce the number of 
inputs to the fuzzy neural network, the PCA method has a disadvantage of not reducing the number of the input signals 
actually used, which increases a possibility that we use unreliable and faulty sensor signals. Also, genetic algorithms 
have a disadvantage that it requires too much computational time. Therefore, in this work, to reduce computing time a 
correlation analysis and the GA are combined to select important input signals.  
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An important problem in sensor failure decision is to decide whether a sensor fails or not after only one abnormal 
observation. At every new sample of a sensor signal, a new mean and a new variance may be computed and then, these 
quantities may be used to check if the sensor fails or not. However, this procedure requires too many samples to obtain 
a meaningful mean and a meaningful variance and also, during the acquisition of the samples, a significant 
degradation of the process monitored may occur. Therefore, in this work the sequential probability ratio test (SPRT) 
[14] was used. The method can decide a failure using the degree of degradation and the continuous behavior of the 
sensor, without having to calculate a new mean and a new variance at each sample. The signal estimated by the fuzzy 
neural network is compared with the measured signal, and then the sensor failure is determined by the SPRT using the 
residual which is the difference between the estimated signal and the measured signal.  

A proposed failure detection algorithm will be applied to monitor the steam generator water level, the hot-leg 
temperature, the ex-core neutron flux sensors in Yonggwang unit 3&4 pressurized water reactors and compared with 
other algorithms. 

2. Signal Estimation Using a Fuzzy Neural Network 

2.1 Fuzzy Inference System 

A system that consists of a fuzzy inference system and its neuronal training system is usually called an adaptive 
network-based fuzzy inference system (ANFIS) [15]. In a fuzzy inference system, the i -th rule can be described using 
the first-order Sugeno-Takagi type [16] as follows: 
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where 

mxx ,,1  = input variables to the fuzzy neural network ( m  = number of input variables), 

imi AA ,,1  = antecedent membership function of each input variable for the i -th rule ( i = 1, 2, ..., n ), 

iŷ  = output of the i -th rule, 
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ijq = weighting value of the j -th input onto the i -th rule output, 

ir  = bias of the i -th output, 

n  = number of rules. 

In this work, the sigmoid membership function is used for the maximum and minimum center values in each 
input variable and the Gaussian membership function is used for other center values. The output of an arbitrary i -th 
rule, if , consists of the first-order polynomial of inputs as given in Eq. (2). The output of a fuzzy inference system 
with n  rules is obtained by weighting the real values of consequent part for all rules with the corresponding 
membership grade and indicates the estimated value of the relevant sensor signal. The estimated signal is obtained as 
follows: 
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2.2 Training of the Fuzzy Inference System 

The back-propagation algorithm is a general method for recursively solving for parameter optimization of a fuzzy 
inference system. Since this conventional optimization algorithm is susceptible to getting stuck at local optima, the 
genetic algorithm is used in this work. However, the genetic algorithm requires much computational time if there are 
many parameters to be optimized. Therefore, the least-squares method that is a one-pass optimization method is 
combined for a part of the parameters. The genetic algorithm is used to optimize the antecedent parameters (center 
position and sharpness of membership functions), and the least-squares algorithm is used to solve the consequent 
parameters ijq  and ir  (the polynomial coefficients of the consequent part).  

In optimization problems using genetic algorithms, the term chromosome refers to a candidate solution that 
minimizes a cost function, generally encoded as a bit string. Each chromosome can be thought of as a point in the 
search space of candidate solutions. Genetic algorithm is an optimization technique that imitates the evolutionary 
process of a living organism. An initial population of chromosomes is iteratively altered by mechanisms inspired by 
natural evolution such as selection, crossover and mutation. Thus genetic algorithms process populations of 
chromosomes, successively replacing one such population with another. Genetic algorithms start from many points 
simultaneously climbing many peaks in parallel, and hence the probability of finding a false peak is reduced compared 
to the methods that move from one point to another. Accordingly, genetic algorithms are less susceptible to being 
stuck at local optima than conventional search methods [10,17,18]. The genetic algorithm is to minimize the overall 
sum of squared prediction errors, the maximum absolute prediction error and the number of used sensor signals. A 
more detailed explanation on the genetic algorithm will be given in the next section. The genetic algorithm is applied 
to the membership functions optimization as well as the input signals selection and the rule number optimization.  

If we fix some parameters of the fuzzy inference system by the genetic algorithm, the resulting fuzzy inference 
system is equivalent to a series of expansions of some basis functions. This basis function expansion is linear in its 
adjustable parameters. Therefore, we can use the least-squares method to determine the remaining parameters. If a 
total of N  input-output training data are given, from Eq. (3) the consequent parameters are chosen to minimize the 
following cost function: 
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y  is the output data vector, q  is the parameter vector, and the matrix W  includes the input data. An equation for 
minimizing the cost function is as follows: 

Wqy . (5) 

The fuzzy neural network output is represented by the nmN )1( -dimensional matrix W  and the 
nm )1( -dimensional parameter vector q . In order to solve the parameter vector q  in Eq. (5), the matrix W  should 

be invertible but is not usually a square matrix. Therefore, we solve the vector by using the pseudo-inverse as follows: 

yWWWq TT 1
. (6) 

2. Input Selection and Rule Generation Methods 

The number of input variables has to be reduced for several reasons. But this seems to be paradoxical at first since 
a dimension reduction decreases the information content. A reduction of the number of variables can lead to an 
improved performance due to at least three reasons. First, irrelevant inputs will result in a model which is not robust. 
Thus, it becomes important to use only high information descriptors. Secondly, since studies have shown that the 
prediction results can get worse if colinearity is present among the variables, it is necessary to remove highly 
correlated variables. Finally, when making a model containing many input variables, a large number of observations 
are required to span the complete input space. The number of required observations grows exponentially with the 
number of input variables, which makes a dimension reduction necessary to get a good model. The number of fuzzy 
inference rules depends on that of selected inputs. That is, many rules are not needed for a few input signals. Therefore, 
it is required to select the optimum number of rules for selected inputs. In this work, in order to select proper input 
signals and the optimum number of rules, a modified genetic algorithm will be developed.  

The genetic algorithms require a fitness function that assigns a score to each chromosome in the current 
population. The fitness of a chromosome (individual) depends on how well that chromosome solves the problem at 
hand. In this work, a fitness function that evaluates the extent to which each individual is suitable for the given 
objectives such as small maximum error together with small total squared error and the small number of input 
variables, is suggested as follows: 

332211exp EEEF , (7) 

where 1 , 2  and 3  are the weighting coefficients, and 1E , 2E  and 3E  are the overall sum of squared prediction 
errors, the maximum absolute prediction error and the number of input variables, respectively, defined as 

N

k

kykyE
1

2
1 )(ˆ)( , (8) 

)(ˆ)(max2 kykyE
k

, (9) 

inputNE3 . (10) 

)(ky  and )(ˆ ky  denote the measured signal and the estimated signal, respectively. Therefore, the genetic algorithm 
minimizes the overall sum of squared prediction errors, the maximum absolute prediction error and the number of 
used sensor signals.  

A chromosome is encoded as a bit string which consists of two parts of bits where one is related to the input 
selection and another is related to the rules number. The input selection part is composed of the same bit number as the 
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number of input variables, and one '1' in this part represents that the corresponding input is selected and zero '0' 
represents that the corresponding input is not selected.  

On the other hand, genetic algorithms have a disadvantage that it requires too much computational time 
Therefore the genetic algorithm is modified to reduce computing time. Note that the correlation coefficient matrix of 
the original data set is equal to the covariance matrix of the data after the data have been standardized. This correlation 
matrix indicates how closely variables (signals) depend one another. The high specific ),( ji  component of the 
correlation matrix means that the two variables are closely related to each other. These values between the input 
variables and the output variable are used to initialize the input selection part of the chromosomes of the genetic 
algorithm. This is described in Fig. 1. The correlation (dotted line) between the output (circle) bit and the selected 
input (triangle) bit has to be as large as possible and the correlations (solid lines) between the selected input (triangle) 
bit and the possible inputs (cross) bits have to be as small as possible. To run a conventional genetic algorithm, each bit 
of the chromosomes is usually randomly assigned one or zero which represent that the corresponding input (bit) is 
selected or not, respectively. However, in this work, there is a high probability that the corresponding (triangle) bit is 
assigned one in case that a correlation between a specific input (triangle) and an output is high and correlations 
between the specific input (triangle) and the possible inputs (cross) are low. On the contrary, there is a high probability 
that the corresponding (triangle) bit is assigned zero in the case that a correlation between the specific input and the 
output is low and correlations between the specific input (triangle) and the possible inputs (cross) are low. This helps 
reduce the computational time by reducing a probability of selecting the inputs that are not almost related to the output 
and also, are much related to other inputs.  

This algorithm for input selection and rule generation is described in Fig. 2. First, the input selection bits of the 
initial chromosomes are generated by using the correlation coefficient matrix, which reduces the computational 
burden of the genetic algorithm that requires much computational time and its rules number bits are allocated 
randomly at first. Also, every input selection generation a part of chromosomes with low fitness are replaced by the 
correlation analysis and a general genetic algorithm succeeds. 

4. Failure Decision 

In sensor failure decision, at every new sample of a signal, a new mean and a new variance of the signal may be 
required to check if the sensor is degraded or not. However, this procedure requires too many samples to obtain a 
meaningful mean and a meaningful variance. During the acquisition of the samples, a significant degradation of the 
monitored process may occur. So Sequential Probability Ratio Test (SPRT) is used to detect a sensor failure using the 
degree of failure and the continuous behavior of the sensor, without having to calculate a new mean and a new 
variance at each sample. The SPRT is a statistical model developed by Wald in 1945 [14].  

The objective of sensor monitoring is to detect the failure as soon as possible with a very small probability of 
making a wrong decision. In the application of sensor failure detection, the SPRT uses the residual (difference 
between the sensor measurement and the sensor estimate). Normally the residual signals are randomly distributed, so 
they are nearly uncorrelated and have a Gaussian (normal) distribution ),,( iiki mP , where k  is the residual signal 
at time k , and im  and i  are the mean and the standard deviation under hypothesis i , respectively. The sensor 

failure can be stated in terms of a change in the mean m  or a change in the variance 2 . If a set of samples ix , 
n,,,i 21 , is collected with a density function P  describing each sample in the set, an overall likelihood ratio is 

given by 
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where 1H  represents a hypothesis that the sensor is degraded and 0H  represents a hypothesis that the sensor is 
normal. By taking the logarithm of the above equation and replacing the probability density functions in terms of 
residuals, means and variances, the log likelihood ratio (LLR, n ) can be written as the following recurrent form: 
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This is the form we use for deriving the sensor drift detection algorithm. For a normal sensor, the log likelihood 
ratio would decrease and eventually reach a specified bound A , a smaller value than zero. When the ratio reaches this 
bound, the decision is made that the sensor is normal, and then the ratio is initialized by setting it equal to zero. For a 
degraded sensor, the ratio would increase and eventually reach a specified bound B , a larger value than zero. When 
the ratio is equal to B , the decision is made that the sensor is degraded. The decision boundaries A and B are chosen 

by a false alarm probability  and a missed alarm probability ; 
1

lnA  and 1lnB . 

5. Applications to Real Nuclear Plant Sensor Signals 

The proposed sensor-monitoring algorithm that combines the above-mentioned methods is described in Fig. 3. 
The input-output data consist of a total of 11 different signals acquired from the startup data of the Yonggwang nuclear 
power plant unit 3&4. These data were standardized before they are presented to the fuzzy neural network. The 
acquired signals are S/G(steam generator) pressure (SP), S/G wide-range water level (WL), S/G narrow-range water 
level (NL), hot-leg temperature (HT), cold-leg temperature (CT), pressurizer pressure (PP), pressurizer temperature 
(PT), pressurizer water level (PL), feedwater temperature (FT), S/G temperature (ST), and excore neutron flux (NF). 
The proposed algorithm was applied to the steam generator water level, the hot-leg temperature, and the excore 
neutron flux sensors. Each signal consists of a total of 1400 discrete time points where the sampling period is 3 min. 
The fuzzy neural network was trained using one fifth of the given data in the training stage and was validated using the 
remaining data in the verification stage.  

It is very important to accurately estimate the signals to determine a sensor failure. Table 1 shows the signal 
estimation and failure detection results of all the application cases and also, in this table the proposed method is 
compared with the other two methods for input selection; conventional genetic method and PCA method.  

In the summary, from Table 1, it is shown that although PCA method uses the largest number of input signals, 
PCA method is the worst of the three methods. But the PCA method is the fastest. It is determined that the 
conventional genetic and proposed methods show similar performance as the input selection methods of fuzzy neural 
networks with application to sensor signal monitoring. However, the training time for the genetic method is about two 
times slower than that for the proposed method even though calculation time depends on the test cases and the 
relationship between input signals and output signal. From above simulations, it is shown that a fuzzy neural network 
with the proposed input selection and rule generation method actually estimates the relevant sensor signal using other 
sensor signals and SPRT failure detection algorithm detects the gradual degradation of sensors. 

6. Conclusions 

In this work, a fuzzy neural network with an automatic input selection and rule generation algorithm was 
developed for sensor monitoring. The real reduction of number of input signals is accomplished by the genetic 
algorithm which requires the substantial computational burden. Thus, the computational burden is reduced by using 
the correlation coefficient matrix which provides information on the relationship between input signals and an output 
signal. Also, since the number of fuzzy inference rules depends on that of selected inputs, the number of its rules is 
decided automatically according to the number of inputs.  

The developed sensor monitoring algorithm was applied to the steam generator water level, hot-leg temperature 
and excore neutron flux sensors. The neuro-fuzzy inference system actually estimates the relevant output signal using 
other input signals. The SPRT decides fast whether a sensor is degraded or not by using the residuals between the 
measured signal and the estimated signal. The fuzzy neural network with the proposed input selection and rule 
generation algorithm is superior to the fuzzy neural network with the other two input selection algorithms (PCA 
method, genetic method).  
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Table 1. Final results for four application cases [after 30 generations training for input selection (genetic and proposed 
methods only) and after 50 generations training for the fuzzy neural network]. 

Sensors S/G water level Hot-leg temperature Excore neutron flux 

Methods PCA Genetic Proposed PCA Genetic Proposed PCA Genetic Proposed 

maximum 
error 

0.09329 0.06318 0.04921 0.11693 0.05663 0.05376 0.13863 0.09034 0.09061 

sum of all 
squared 
errors 

0.46998 0.13267 0.14105 0.55318 0.14979 0.16091 0.87693 0.33749 0.51287 

std. dev. 0.04097 0.02177 0.02244 0.04445 0.02313 0.02397 0.05596 0.03472 0.04280 

error (2 ) 0.08194 0.04354 0.04489 0.08890 0.04626 0.04795 0.11193 0.06944 0.08560 

Training 

data 

fitness1) 0.59045 0.73874 0.76972 0.54547 0.75212 0.77307 0.49481 0.64098 0.62931 

maximum 
error 

0.11415 0.06371 0.06006 0.20939 0.05540 0.05415 0.18291 0.09702 0.09220 

sum of all 
squared 
errors 

1.92980 0.51955 0.56311 2.35390 0.59794 0.63719 3.64940 1.35500 2.03930 

std. dev. 0.04153 0.02155 0.02243 0.04586 0.02312 0.02386 0.05711 0.03480 0.04269 

Verifica- 

tion 

data 

error (2 ) 0.08305 0.04310 0.04487 0.09173 0.04623 0.04773 0.11422 0.06960 0.08538 

Number of  
FNN inputs 6 5 5 6 5 4 6 7 7 

Number of  
rules - 4 5 - 4 4 - 4 4 

Used signals  all 
signals 

WL,HT 
PT,ST 

NF 

WL,HT 
PL,FT 

NF 

all 
signals 

NL,PT 
PL,FT 

NF 

SP,WL 
FT,NF 

all 
signals 

SP,NL 
HT,CT 
PP,PL 

FT 

SP,NL 
HT,CT 
PP,PL 

FT 
Failure detection time2) 52 62 126 141 126 90 114 108 107 

1) The fitness value was calculated in combination with the genetic optimization of the fuzzy neural network 
parameters. 

2) Sampling time steps after the beginning of purposely gradual degradation 
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Fig. 1. A figure describing a process of input selection (an input selection part of chromosomes). 

 

Fig. 2. Schematic diagram of the input selection algorithm. 

Figure. 3. Schematic diagram of the proposed sensor-monitoring algorithm. 
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