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Abstract 

The variance reduction techniques using adjoint solutions are applied to the Monte Carlo 
calculation of the HYPER(HYbrid Power Extraction Reactor) core neutronics. The applied 
variance reduction techniques are the geometry splitting and the weight windows. The 
weight bounds and the cell importance needed for these technieques are generated from an 
adjoint discrete ordinate calculation by the two-dimensional TWODANT code. The flux 
distribution variances of the Monte Carlo calculations by these variance reduction 
techniques are compared with the results of the standard Monte Carlo calculations. It is 
shown that the variance reduction techniques using adjoint solutions to the HYPER core 
neutronics result in a decrease in the efficiency of the Monte Carlo calculation. 

1. Introduction 

The Monte Carlo (MC) calculation is occasionally adopted as a means to obtain the 
reference solutions to the neutronics problems because it is capable of providing accurate 
numerical solutions by handling the complex three-dimensional geometry of the problems 
exactly and inputting the continuous energy microscopic cross-section data from the up-to-
date evaluated nuclear data files. . But it has a major drawback of long computing time by 
requiring sampling a number of particles that are sufficient enough to obtain the results with 
sufficient precision. To overcome this drawback, variance reduction techniques[1] are 



commonly adopted in the Monte Carlo calculation that allows one to sample less particle 
histories required than otherwise but can bring out the results having desired precision. 

 
Geometry splitting and weight windows are among the most common variance reduction 

techniques. Use of these methods requires importance weightings dependent on space, 
energy and angle. They can be generated from the adjoint solutions either from  
deterministic adjoint calculations or from the MC adjoint calculations. The variance 
reduction techniques using the adjoint solutions[2] have been successfully applied to deep 
penetration problems  and have been found very effective in enhancing the computational 
efficiency of the Monte Carlo calculation. 

 
Motivated by this, we applied the variance reduction techniques using adjoint solution to 

the neutronics analysis of the HYPER[3] core and examined the efficiency of the adjoint 
weighting in reducing the variance in the MC neutronics calculations. HYPER is an 
accelerator driven subcritical reactor system designed for incinerating or transmuting long-
lived nuclides contained in the nuclear wastes.  The purpose of this paper is to present our 
experience with the efficiency of the adjoint weighting on the variance reduction in the MC 
calculation for the multiplication and flux distributions of the HYPER core. 

 
The MC code we used in this study is the MC-CARD[4], the Monte Carlo Code for 

Advanced Reactor Design. The MC-CARD is a personal computer based MC program 
which is designed exclusively for neutronics analysis of nuclear fuel and reactor systems. 
The special feature of it is the capability of depletion analysis and parallel computation. 
These features of the MC-CARD are verified elsewhere.[5] 

 

2. Test of Variance Reduction Techniques 

Variance-reducing techniques in Monte Carlo calculations can reduce the computer time 
required to obtain results of sufficient precision. Yet it is often difficult to properly apply 
variance reduction techniques. Moreover, they may increase the variance without due 
precaution in using them. 

2.1 Variance Reduction Techniques 

Geometry splitting and weight windows are the most common variance reduction 
techniques. They are referred to as methods of controlling particle population. 

Geometry splitting requires the assignment of an importance to each geometric cell in the 
system geometry model. The creation and destruction of particles are based on those values. 
When a particle enters a cell of higher importance than the cell it has just left, it may be split 
into two or more particles, each being attached with the share of the original particle’s 
weight. When a particle enters a cell of lower importance, it may be killed or survive by 
Russian roulette game. 

 
Weight windows are similar to geometry splitting. Each cell has the lower and upper 



weight bounds that are inversely proportional to the importance. If a particle’s weight is 
above the upper bound, it is split into a sufficient number of particles such that each 
individual particle’s weight lies within the weight window. If a particle’s weight is below the 
lower bound, it is subjected to Russian roulette. Geometry splitting controls particle’s 
population dependent on its position, whereas the weight window particles’ population 
dependent on its position, energy and direction of motion. 

 
2.2 Examination of Adjoint Weighting with Deep Penetration Problem 
 
In order to examine the efficiency of the adjoint weighting on the variance reduction in the 

MC calculations by the MC-CARD, a shielding problem is taken as the test problem[6] and 
MC-CARD calculations with the geometry splitting and weight windows with the adjoint 
weighting are compared with the analog and the standard MC calculations. The test   
problem is described by a point isotropic neutron source shielded by 180 centimeter thick 
Saeffer portland concrete. The problem calls for estimation of the neutron flux at the 
detector location 20 meter away from the source. 

 
Table 1(a) shows that there are no neutrons tallied in the detector by the analog Monte 

Carlo calculation and the standard Monte Carlo calculation. The standard Monte Carlo 
calculation here means the MC calculation that is conducted with the use of the implicit 
capture variance reduction technique. In contrast to these, Table 1(b) and 1(c) show that 
neutrons are tallied in the detector cell by the Monte Carlo calculation using geometry 
splitting or weight windows. For this problem, the importance weightings used in geometry 
splitting and weight windows are properly postulated ones.[6] 

3. Variance Reduction Using Adjoint Solutions 

One has to input the importance weightings or weight bounds in  applying geometry 
splitting or weight windows to Monte Carlo calculation of HYPER core. The direct 
assignment of importance (or weight bounds) is an art requiring considerable skill, 
experience, and luck. The adjoint solution can be used as the importance function as 
suggested as early as 1958 by Geertzel and Kalos [7]. The weight bounds of weight 
windows are readily converted from cell importance by the following equations. 

0.25Lower Bound
Cell Importance

Survival Weight 3.0 Lower Bound
Upper Bound 5.0 Lower Bound 

=

= ×
= ×

 

In practice, the adjoint solution can be obtained by Monte Carlo adjoint calculation or by 
the deterministic solution method for the adjoint transport equation or the adjoint diffusion 
equation. Figure 1 shows the computational flowchart of variance reduction using the 
adjoint solutions.  



4. Numerical Results 

The HYPER core is illustrated in Figure 2. The core is composed of four regions and fuel 
region is homogenized for simplicity. The HYPER core is divided into as many as 11,000 
cells. The adjoint flux for each cell is obtained by TWODANT code[8]. Figure 3 shows the 
radial flux distributions in the center plane axially and energy spectrum in the fuel cell at the 
center of the reactor from TWODANT forward and backward calculations. 

 
These adjoint fluxes are normalized such that the maximum adjoint flux outside the 

source region is unity. Then the normalized adjoint fluxes are used as cell importance in 
geometry splitting method. Table 2(a) shows the MC-CARD calculations with the geometry 
splitting weighted by adjoint fluxes. It shows that the relative standard deviations at 
R=26.16cm and Z=208cm, are 0.03 and 0.06, respectively, by the standard MC and by the 
geometry splitting MC calculation. In contrast to the test shielding problem, the use of 
adjoint weighting in the geometry splitting method does not result in the variance reduction. 
Instead, It increased the variances of radial fluxes in comparison with the standard MC 
calculation. For this comparison, two MC calculations are stopped at about the same 
computer run time. 

 
Inverse values of normalized groupwise adjoint fluxes are inputted as the weight bounds 

of 25 energy groups. Table 2(b) show the MC-CARD results with the weight windows 
weighted by adjoint fluxes. It shows that the standard MC and MC calculations with the 
weight windows weighted by adjoint fluxes have about the same relative standard deviations 
at R=26.16cm and Z=208cm. But the two MC calculations show the relative standard 
deviations of 0.03 and 0.04 at R=70.25cm and Z=208cm, respectively, which indicates 
weight windows applied to HYPER core analysis problem decrease the Monte Carlo 
efficiency  as is shown in the geometry splitting 

5. Conclusion 

The variance reduction technique using adjoint solutions has been a powerful method for 
the deep penetration problem. To our surprise, however, the application of this technique to 
the HYPER core results in a decrease in the efficiency of the Monte Carlo calculation. 

To our best knowledge, the application of the variance reduction techniques utilizing the 
adjoint weighting to the power reactor like the HYPER core has not yet been reported.  
Several issues remain yet to be explored. The three-dimensional transport theory code like 
THREEDANT[8] may be used to get the directional information on adjoint weight function, 
which may allow the angular biasing in the right direction. 
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Table 1. Results of Variance Reduction Test Problem 

(a) Analog and Standard Monte Carlo Calculations 
Analog Implicit Capture                      Var. Red. Tech. 

   Reults Flux Std. Dev. Flux Std. Dev. 
Neutron Flux of Detector 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

Computer Time 7.85 min. 14.46 min. 
Source Particle Number 1,000,000 1,000,000 
 
(b) Geometry Splitting Monte Carlo Calculations 

Geo. Split. Only Geo. Split. / Impl. Cap.                      Var. Red. Tech. 
   Reults Flux Std. Dev. Flux Std. Dev. 

Neutron Flux of Detector 2.96E-13 2.07E-14 2.58E-13 1.29E-14 
Computer Time 37.64 min. 79.68 min. 

Source Particle Number 200,000 200,000 
 
(c) Weight Windows Monte Carlo Calculations 

Wgt. Wnd. Only Wgt. Wnd. / Impl. Cap.                      Var. Red. Tech. 
   Reults Flux Std. Dev. Flux Std. Dev. 

Neutron Flux of Detector 2.92E-13 2.34E-14 2.41E-13 1.69E-14 
Computer Time 34.55 min. 40.24 min. 

Source Particle Number 200,000 200,000 
 



Table 2. Results of HYPER Core by Variance Reduction Using Adjoint Solutions  

(a) Geometry Splitting Monte Carlo Calculations 

 
 
(b) Weight Windows Monte Carlo Calculations 

 
 

Flux Rel. Err. Flux Rel. Err. Flux Rel. Err.
26.16 6.27 2.87E-02 6.22 3.03E-02 6.06 6.08E-02
28.48 6.15 2.92E-02 6.14 3.08E-02 5.95 6.25E-02
30.80 6.00 2.91E-02 6.04 3.12E-02 5.79 6.40E-02
33.12 5.84 2.97E-02 5.87 3.19E-02 5.70 6.48E-02
35.44 5.75 3.02E-02 5.72 3.22E-02 5.61 6.58E-02
37.76 5.68 3.06E-02 5.70 3.29E-02 5.50 6.68E-02
40.08 5.59 3.12E-02 5.61 3.31E-02 5.43 6.79E-02
42.40 5.52 3.17E-02 5.49 3.36E-02 5.37 6.80E-02
44.72 5.45 3.17E-02 5.36 3.40E-02 5.29 6.89E-02
47.04 5.35 3.21E-02 5.28 3.43E-02 5.19 7.00E-02
49.37 5.24 3.24E-02 5.17 3.49E-02 5.10 7.06E-02
51.69 5.13 3.27E-02 5.05 3.49E-02 5.02 7.17E-02
54.01 5.07 3.30E-02 5.03 3.51E-02 4.93 7.23E-02
56.33 4.98 3.31E-02 4.90 3.56E-02 4.86 7.32E-02
58.65 4.86 3.37E-02 4.85 3.55E-02 4.77 7.36E-02
60.97 4.78 3.40E-02 4.74 3.58E-02 4.69 7.40E-02
63.29 4.66 3.41E-02 4.64 3.59E-02 4.62 7.41E-02
65.61 4.56 3.42E-02 4.57 3.64E-02 4.53 7.55E-02
67.93 4.47 3.45E-02 4.46 3.68E-02 4.45 7.61E-02
70.25 4.39 3.48E-02 4.41 3.68E-02 4.37 7.65E-02

Computer Time
Src. Part. Num.

Loc(R_dir)
Z=208

Analog Standard

30000 10000 40000

Geo. Split. / Impl. Cap.

7.37 hr 6.06 hr 5.50 hr

Flux Rel. Err. Flux Rel. Err. Flux Rel. Err. Flux Rel. Err.
26.16 6.22 3.03E-02 5.88 1.02E-01 6.11 4.68E-02 6.25 3.04E-02
28.48 6.14 3.08E-02 5.85 1.05E-01 6.00 4.71E-02 6.13 3.08E-02
30.80 6.04 3.12E-02 5.78 1.02E-01 5.88 4.78E-02 6.00 3.17E-02
33.12 5.87 3.19E-02 5.68 1.06E-01 5.80 4.85E-02 5.88 3.19E-02
35.44 5.72 3.22E-02 5.61 1.08E-01 5.72 4.98E-02 5.80 3.26E-02
37.76 5.70 3.29E-02 5.51 1.08E-01 5.60 5.07E-02 5.67 3.34E-02
40.08 5.61 3.31E-02 5.52 1.08E-01 5.57 5.14E-02 5.62 3.36E-02
42.40 5.49 3.36E-02 5.42 1.11E-01 5.49 5.23E-02 5.53 3.40E-02
44.72 5.36 3.40E-02 5.24 1.13E-01 5.35 5.26E-02 5.41 3.46E-02
47.04 5.28 3.43E-02 5.15 1.13E-01 5.27 5.29E-02 5.32 3.50E-02
49.37 5.17 3.49E-02 5.02 1.14E-01 5.20 5.41E-02 5.21 3.54E-02
51.69 5.05 3.49E-02 4.90 1.20E-01 5.10 5.55E-02 5.14 3.59E-02
54.01 5.03 3.51E-02 4.82 1.19E-01 5.01 5.59E-02 5.05 3.64E-02
56.33 4.90 3.56E-02 4.77 1.22E-01 4.90 5.67E-02 4.94 3.68E-02
58.65 4.85 3.55E-02 4.74 1.23E-01 4.80 5.68E-02 4.86 3.72E-02
60.97 4.74 3.58E-02 4.60 1.24E-01 4.72 5.73E-02 4.80 3.76E-02
63.29 4.64 3.59E-02 4.46 1.27E-01 4.64 5.78E-02 4.71 3.80E-02
65.61 4.57 3.64E-02 4.40 1.27E-01 4.58 5.89E-02 4.63 3.86E-02
67.93 4.46 3.68E-02 4.32 1.29E-01 4.46 5.90E-02 4.54 3.86E-02
70.25 4.41 3.68E-02 4.41 1.28E-01 4.44 6.01E-02 4.47 3.93E-02

Computer Time
Src. Part. Num.

Loc(R_dir)
Z=208

Standard Wgt. Wnd. / Impl. Cap. Wgt. Wnd. / Impl. Cap. Wgt. Wnd. / Impl. Cap.

6.06 hr 0.60 hr 2.50 hr 5.82 hr
10000 10000 40000 100000



 

Figure 1. Flowchart of Variance Reduction Using Adjoint Solutions 

Figure 2. Approximated Geometry of HYPER Core 
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Figure 3. Flux distributions and Energy Spectrum of HYPER Core By TWODANT 
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