Numerical Analyses of Flow Structure and Heat Transfer Downstream of Mixing Vane of Spacer Grid in Fuel Assembly

Abstract

The present work analyzed the effect of mixing vane shape on the flow structure and heat transfer downstream of mixing vane in a subchannel of fuel assembly, by obtaining velocity and pressure fields, flow -mixing factors, heat transfer coefficient and friction factor using three -dimensional RANS analysis. Split vane as a typical mixing vane and SG1 and SG2, which are designed by the authors, were tested to evaluate the performances in enhancing the heat transfer. Standard k- ϵ model is used as a turbulence closure model, and, periodic and symmetry conditions are set as boundary conditions. It reveals that heat transfer rate is affected significantly by swirl and cross-flow as well as by the flow blockage.

1.

<i>4</i>	(spacer gr	id)	(mixing vane)	
(turbulence)		Rehm	ne ^[1] 가	Shen
^[2] LDV フト , Chun Choi ^[3]		ripped -open	25 °	
가				(CFD)
In ^[4,5,6] CFD CFX -4.2		CFE	가	. Gu
^[7] 7ŀ		3	CFD	CFDS -
FLOW3D				
CFD . In ^[8] 가 S	CFD Split vane	30 °-35 °	Swirl vane	9
35 °-40 ° . , In [[]	9] 가	CFD 3		가
,	,		가, 2	
CFD CFX-TAS SG1 SG2	SCflow ^[10]			split vane
2.				
2.1 가 가 .		Fig.1		
11.468mm (D) 9.5r 40 D _h	40mm mm	600r 12.7	mm . 'mm . 3.5 <i>D</i>	(<i>D_h</i>) _h (40mm)

	50 D_h (560mi	n)				
				Fig.2	3가	(SG1,
SG2	Split vane)		. SG1			
					15	°. SG2
		SG1	15	5°		
		25 °	. Split van	е	25 °	
	10mm	. SG1, SG2	Split vane	CFD	180	
3	5		150,000	. Fig.3	3가	

Fig. 1 Detail of the spacer grid with mixing vanes

Fig. 2 Spacer grid CFD models: SG1, SG2, and split vane(from left)

Fig. 3 Subchannel cross -sectional grids: SG1, SG2, and split vane(from left)

2.2

(no -slip) (heat flux; $30000 W / m^2$)

(periodic condition)

 7
 7

 6.79 m / s (Re =80,000)

2.3

	CFD		CFX-TA	•				
	LPS	(Linear	Profile	Skewed	Upstream	Differencing	Scheme)	
Launde	r	Spaldin	ig ^[11]	k - <i>E</i>				
(Residual) 10^{-3} 가				3				

3.

3.1

Fig.4		Z/I	$D_{h} = 2$	$Z/D_h = 30$		3가	
				. (Z=0			.)
	$2 D_h$	SG1	SG2				Тір
		()	()		
Split vane		$30 D_h$					
		SG2					
가				. SG1			

 $Z/D_h = 2$ $Z/D_h = 30$ $Z/D_h = 2$ $Z/D_h = 30$

Fig.4 Velocity vectors and contours in the subchannel: SG1, SG2, and split vane(from top)

가	Spli	t vane			SG2				
						가			
3.2									
Fig.5		$Z/D_h=2$	$Z/D_h=3$	0	3가				
						가			
	. 2 <i>D</i> _h	가	. 30 D _h	SG1	Split vane				
가						. SG2			
	가								
$30 D_h$	SG2 가				Split vane				
					. Fig.6 3가				
가							가		
					. Split vane	가			
	. Split va	ane			25 °				
(Blo	ockage Ratio) フ	ŀ	. SG1			가			
		SG1							
가									

Fig.5 Pressure contours in the subchannel: SG1, SG2, and split vane(from top)

3.3

가

$$S_{M} = \frac{\int r^{2} V_{lateral} \ U dr}{R_{s} \int r U^{2} dr}$$
(1)

 R_{s}

U

r

Fig.7 Axial variation of swirl -mixing factor

 $F_{CM} = \frac{1}{s} \int \frac{|V_{cross}|}{V_{bulk}} dy$ ⁽²⁾

, s V_{cross} V_{bulk} .Fig.8. SG2 $3D_h$ 7Split vane7

, Split vane SG2

3.4

가 가 Nusselt 가 (SG1, SG2, Split vane)

$$\frac{Nu}{Nu_0} = \frac{T_{b_0} - T_{w_0}}{T_b - T_w}$$
(3)
$$T_{b_0} \qquad T_{w_0} \qquad \qquad 7!$$

Fig.9 Nusselt number distributions for the different three mixing vanes

. Fig.9

Fig.10 Nusselt number distributions for the different three mixing vanes calculated by Yao et al. correlation

Fig.11 Friction factor distributions for the rod bundles

3.5

가

V

.

.

•

•

Fig.11 3가 가

							가	가	
	Split	vane	가 기	가		SG1, SG	2, Spli	t vane	9
	(eta)	16%, 19%,	21.4%					Split	vane
	가					, SG1	SG2		
	SG2				SG1			SG2	
가							8 D_h		Split
vane		SG1		. SG1	,				

.

4.

가 , 가 (SG1,SG2) Split . . SG1 vane . SG2 SG2 $30 D_h$. Split vane 가 가 20 D_h 20 D_h SG1 SG2

가 . 가 . 가

- K. Rehme, "Pressure Drop Correlation for Fuel Element Spacer," 1973, Nucl. Technol. Vol.17, pp15-23.
- [2] Shen Y.F., Cao Z.D. and Lu Q.G., An investigation of crossflow mixing effect caused by grid spacer with mixing blades in a rod bundle," *Nuclear Engineering and Design*, *Vol.125(1991)*,pp.111-119
- 1999
 B pp. 645 650.

 [4]
 ,
 ,
 ,
 CFD ,"

 (1998) '98
 ,
 ,pp.514 522
 ," (1999) '99

. pp.608-613

, "

,

[3]

- [6] In W.K., Oh D.S., Chun T.H. and Jung Y.H., "Numerical Examination of Coolant Flow Mixing in Nuclear Fuel Assembly with Mixing Promoters," (2000) 8th Int. Conference on Nuclear Engineering, Baltimore, USA, April 2-6.
- [7] C. Y. Gu, Wei Ji, Z. Karoutas and B. Scholin "3D flow Analyses for Design of Nuclear Fuel Spacer" *Proceedings of The Tnt. Meeting on Nuclear Reactor Thermal -Hydraulics*, New York, United Sates, September 10-15.
- [8] , , , "CFD ," Proceedings of The First National Congress on Fluids Engineering September 1 -2,2000,Muju,Korea, pp.467 - 470.

CFD

,"

- [9] , , , " 2001 E, pp. 482-487.
- [10] CFX-TASCflow Computational Fluid Dynamics Software, AEA Technology Engneerng Software Ltd, (1999)
- [11] Launder B.E. and Spalding D.B., 1974, "The numerical computation of turbulent flows," *Computational Methods in Applied Mechanics and Engineering*, 3. pp.269-289.
- [12] S.C.Yao, L.E.Hochreiter and W.J.Leech,"Heat Transfer Augmentation in Rod bundles near Grids," J.of Heat Transfer, Trans.of the ASME, Vol.104.pp.76-81(1982)