Five-Sensor Conductivity Probe

Experimental Method and Data Generation for Interfacial Area Concentration in Adiabatic Condition by Using a Five-Sensor Conductivity Probe

Abstract

Interfacial area concentration is one of important parameters in the constitutive relations relating to the interfacial transfer terms in the two-fluid model. In this paper, the measuring method for the interfacial area concentration by using a five-sensor conductivity probe is briefed. To generate IAC data, an air/water test loop is constructed, which has the 0.08m diameter of test section. The IAC transport phenomena are examined by measuring the IAC at vertical three positions: L/D=12.2, 42.2, 100.7. The test range is 0.47~2.87m/s of superficial liquid velocity and 0.11~1.58m/s of superficial gas velocity, which corresponds to the bubbly and slug flow in the flow regime map. In this study, the bubbles are categorized into two groups based on their size, and IAC and void fraction data of each group are generated respectively. Since the IAC data are classified into two groups, the data could be directly used to model the IAC by two group interfacial area transport equations.

1.

			4	
			. (Euh et al., 200	01, 2002)
	Five Sensor Cond	luctivity Probe	IAC	
Loop	8cm IAC		가	Air/Water Test
		Impedance	Void Meter(IVM)	Conductivity
Probe		L/D=12.2,	42.2, 100.7 .	2
			0.47~2.81	m/s,
0.	11~1.58m/s	가		
		Cap	o/Slug	IAC
2. Five-Sensor	Conductivity Prol	be Method		
	Five-S	Sensor Conductivity	y Probe	1.
	,	, フŀ		Four-Sensor
Conductivity Pro	be	·	가	,
-	가			4
	,	フ	ŀ	
			2	
			I	5
		II		5
	,	III 3	2	,
	IV			
II	III			37
	2			
	. (E	uh et al., 2001, 2000	02)	
I		~ . ~		
Sub-Cell		Sub-Cell	S-1 C-11	
IAC	Sub-Cell		Sub-Cell	가
II	-	Sub-Cell	Four-Se	nsor
IAC ,		Four-Set	nsor	
		가		

Sub-Cell III

•

가

•

IV

Ι

Double-Sensor Probe Method

$$\overline{a}_{i}^{t} = 2N_{i} \left\{ \sum_{j} \frac{1}{\left| v_{j} \right|} \middle/ \sum_{j} \right\} \{I\}$$
(3)
.(Kim et

al., 2000):

 $I = 2 + \left(\frac{v_b}{v_b}\right)^2$ (4) 가 가

IAC

IV

3.

3-1.

Conductivity Probe Spoolpiece / Impedance Void Meter(IVM) Spoolpiece , DAS 0.08m 가 10m , . , , Conductivity Probe Spoolpiece IVM Spoolpiece가 (L/D=12.2, 32.2, 100.7) . Conductivity Probe IVM . Conductivity Probe Spoolpiece IVM Test Section . (Preheater) 가

> Conductivity Probe7 Conductivity Probe

> > .

,

3

30°C 2 bar

4

Main Water Flow7 가 Water Flow가

Turbulence	e				W	/ater フト		A	ir					
	가		. Water	Flow				Cor	ioli	s Me	eter			
	Rotame	ter	Spoolpi	ece	. Co	onductiv Conduc	vity tivi	5 Prot ty I	C be Prol	onduc be	ctivity , Spo	Probe	e Spoc	lpiece
, Probe	가 , IV	. E M	DAS 15	Si (5 I	ignal A Sens BM	Condit A/D sor X Pentiu	tion 3E4 1m	er A) MM	A/] X	D 233	, PC MHz	2 3 2	l/ Con A/D	100 mm , ductivity board
Conductiv	vity Pro	obe		A	A/D		1	kHz				, A/D	,)	,
			2	20 kHz	Z				1	5				
3-2 Five	e-Sensor	c Co	onductivi	ity Prob	e									
			Cor	nductiv	ity P	robe	5							<i>.</i>
Five Sens 0.07mm	sor Coi	ndu	ctivity]	Probe	1	0.5mn	n			. Cor	nductiv	vity Pı	robe	6
Wetting Probe Voltage)			2						2		•		Con (T	ductivity hreshold
		_				$V_T = S(V$	/ peak	$-V_L$)	$+V_{j}$	L				(5)
	V _{peak}	`	V _L .					가			가			
		ז	'ŀ	ſ	Vun	가 at a1(10	가) (°u+	off	Value	. C			가 .
				• (I UII	c ul(1)	,0)	Jul	011	Turuc	, 0	1 4 141		

4

. Five-Sensor Probe

가. Rectangulization

가 가 i) 가 . G(i) G(i): f(i_begin+i)= f(j_begin+i) 1 $f(i_begin+i) \neq f(j_begin+i)$ 0 G(i)(7) cross= Ν j_begin cross 가 . f , i_begin j_begin 가 count number 가 ii) $\left|\frac{\boldsymbol{\tau}_{bi} - \boldsymbol{\tau}_{bj}}{\boldsymbol{\tau}_{bi}}\right| < \boldsymbol{\varepsilon}_1$ (8) 가 iii) $\frac{\Delta s}{\Delta t} < k \mathbf{\bar{v}}_i$ (9) 가 iv) 4

, Cap ,

가 .

1 : Spherical, Distorted Bubble

2 : Cap, Slug bubble

Bubble Chordal 가 Length Spherical/Distorted , Clift et al(1978) Cap/Slug (2 bar, 30°C) Eo=40 17.08mm 4 I, II, III IV 가 가 가 Double Probe 가 Double-Sensor Ishii(1977) 30°C 1.86mm 2bar Chordal Length가 D_{ds} 가 가 IV 가 가 가 가 가 Non Effective Non-Effective 가 가 IAC Non-Effective Effective 가 $\overline{a}_{i} = \left(\overline{a}_{i}\right)_{eff, front} \frac{N_{detect}}{N_{eff, front}} + \left(\overline{a}_{i}\right)_{eff, rear} \frac{N_{detect}}{N_{eff, rear}}$ (10)4. 가 Five-Sensor Conductivity Probe 7 Five-Sensor Method7 Four-Sensor Method 가 . 가 IAC IAC 8 Flow Regime Map

· 1	가	,
	가 ,	
	가	가
가		
Flow Regime Map		
	9	
Lockhart and Martinel	li (1949)	. 3 76%
Lookhurt und Murther	Drift Flux Model	5.7070
	Taitel et $al(1980)$	
Fina Disp	arsod Elow Pagima Wallis(1060)7	
The Dispe	Zuber	$O(\mathbf{b})$
,		9(0) 9(-)
	, 8.3% .	9(c)
	Conductivity Probe	-
	11.8% 2F	
Conductivity Probe	frequency	가
Conductivity Probe	IAC	2
-	Bias Error	, Bias
Error 가		
가		
	IAC	
	·	
IAC	가 . IA	С
IAC	7.BreakupCoalescence,	С
IAC	万├ . IA Breakup Coalescence , . Breakup	С
IAC	기 . IA Breakup Coalescence , Breakup IAC 기 . Coalescence	С
IAC 7ŀ	기 . IA Breakup Coalescence , Breakup IAC 기 . Coalescence IAC	С
IAC フト	기 . IA Breakup Coalescence , . Breakup IAC 기 . Coalescence IAC .	С
IAC 가	기 . IA Breakup Coalescence , Breakup IAC 기 . Coalescence IAC .	С
IAC フト	가 . IA Breakup Coalescence , . Breakup IAC 가 . Coalescence IAC . 71	C Wake
IAC フト	기 . IA Breakup Coalescence , Breakup IAC 가 . Coalescence IAC . . 기	C Wake- 71
IAC 7† Entrainment	7 . IA Breakup Coalescence , . Breakup IAC 7 IAC 7 . Coalescence IAC . 7 	C Wake- フト
IAC 7} Entrainment (1)	기 . IA Breakup Coalescence , Breakup IAC 기 . Coalescence IAC . 기 , (2)	C Wake- 가
IAC 7 Entrainment (1) set	기 . IA Breakup Coalescence , Breakup IAC 기 Coalescence IAC	C Wake- フト
IAC 7 Entrainment (1) set Case 08	7 IA Breakup Coalescence Breakup Coalescence IAC 7 IAC 7 . 7 . 7 . 7 . 7 . 7 . 2	C Wake- フト
IAC 7 Entrainment (1) set Case 08	기 IA Breakup Coalescence , Breakup IAC 기 Coalescence IAC . , 기 , (2) 기	C Wake- フト Wall
IAC 7 Entrainment (1) set Case 08 Peaking	기 IA Breakup Coalescence , Breakup IAC 기 Coalescence IAC . , 기 , (2) 기	C Wake- 7} Wall
IAC 7 Entrainment (1) set Case 08 Peaking	기 . IA Breakup Coalescence , Breakup IAC 기 Coalescence IAC	C Wake- 7ŀ Wall
IAC 7 Entrainment (1) set Case 08 Peaking	7 . IA Breakup Coalescence , IAC 7 . Coalescence IAC . . IAC 	C Wake- 7ŀ Wall
IAC 7 Entrainment (1) set Case 08 Peaking 7	기 . IA Breakup Coalescence , Breakup IAC 기 Coalescence IAC	C Wake- 7ŀ Wall IAC
IAC 7; Entrainment (1) set Case 08 Peaking 7; Coalescence	기 IA Breakup Coalescence , IAC 기 Coalescence IAC 기 . IAC 기 . . 기 . . 기 . . 기 . . 기 . . 기 <td>C Wake- 7} Wall IAC</td>	C Wake- 7} Wall IAC
IAC 7 Entrainment (1) set Case 08 Peaking 7 Coalescence Case 05 Cap Bubble	기 IA Breakup Coalescence , IAC 기 Coalescence IAC 기 Coalescence IAC 기 (2) 기 . . 기 . . 기 . . 기 . . 지 . . 기 . . 지 . . 지 . . 지 . . 지 . . 지 . . 지 . . 지 . . 지 . . 지 . . 지 . . 지 . . 지 	C Wake- 7 Wall IAC

REFERENCES

D.J. Euh, B.J. Yun, C.H. Song, T.S. Kwon, M.K. Chung, U.C. Lee, "Development of the Five Sensor Conductivity Probe Method for the Measurement of Interfacial Area Concentration", Nuclear Eng. Des., pp. 35-51, 2001

D.J. Euh, A Study on the Measurement Method and Mechanistic Prediction Model for the Interfacial Area Concentration, Ph. D Thesis, Seoul Univ., 2002

I. Kataoka, M. Ishii, and A. Serizawa., "Local Formulation of Interfacial Area Concentration," Int. J. Multiphase Flow, 12, pp. 505-529, 1986.

I. Kataoka and A. Serizawa, "Interfacial Area Concentration in Bubbly Flow," Nucl. Eng. Design, 120, 163-180, 1990

T. Hibiki, M. Ishii, "Two-Group Interfacial Area Transport Equations at Bubbly-to-Slug Flow Transition," Nuclear Engineering and Design, Vol. 202, pp. 39-76, 2000

M.Ishii, Thermo-fluid Dynamic Theory of Two-Phase Flow, Eyrolles, Paris, New York, 1975

M.Ishii, One Dimensional Drift Flux Model and Constitutive Equations for Relative Motion Between Phases in Various Two Phase Flow Regimes, Argonne National Laboratory Report, ANS-77-47, 1977

M. Ishii, S. T. Revankar, Measurement of Interfacial Area Using Four Sensor Probe in Two Phase Flow, DOE/ER/14147, July, 1991

M. Ishii, S. Kim, "Micro Four Sensor Probe Measurement of Interfacial Area Transport for Bubbly Flow in Round Tubes," Nuclear Eng. Des., pp. 123-131, 2001

, 2-3

G., Kocamustafaogullari, W. D. Huang, and J. Razi, "Measurement and Modeling of Average Void Fraction, Bubble Size and Interfacial Area," Nucl. Eng. Des. 120, pp. 163-180, 1994

J.M. Le Corre, E.Hervieu, M.Ishii, J.M.Delhaye, "Benchmarking and Improvements of Measurement Techniques for Local Time-Averaged Two-Phase Flow Parameters," ICMF 2001, New Orleans, 2001

S.T. Revankar and M. Ishii, "Local Interfacial Area Measurement in Bubbly Flow," Int. J. Heat and Mass Transfer, Vol. 35, No. 4, pp. 913-925, 1992

S.T. Revankar and M. Ishii, "Theory and Measurement of Local Interfacial Area Using a Four Sensor Probe in Two-Phase Flow," Int. J. Heat Mass Transfer, Vol. 36, No. 12, pp. 2997-3007, 1993

M.J. Tan and M. Ishii, Interfacial Area Measurement Methods, ANL-89/5, Feb., 1989

B.J. Yun, Measurement of Two-Phase Flow Parameters in the Subcooled Boiling, Ph. D. Thesis, Seoul National University, Korea, 1996

Case No.	j _f m/s	j _g (1) m/s	j _g (2) m/s	j _g (3) m/s	P(1) 10 ⁵ Pa	P(2) 10 ⁵ Pa	P(3) 10 ⁵ Pa	α(1) %	α(2) %	α(3) %	Liquid Flow kg/s	Gas Flow g/s	Temp °C
01	1.36	0.113	0.117	0.142	2.13	1.92	1.46	5.86	6.88	8.52	6.81	1.19	30.7
02	1.21	0.304	0.373	0.453	2.01	1.81	1.42	14.7	16.8	20.7	6.06	3.54	31.0
03	1.02	0.195	0.230	0.277	2.02	1.81	1.41	11.3	12.6	15.5	5.13	2.20	31.1
04	2.01	0.308	0.366	0.454	2.09	1.87	1.45	9.9	11.5	14.8	10.1	3.68	31.1
05	0.99	0.410	0.560	0.686	1.99	1.80	1.46	20.5	24.9	29.3	4.94	4.81	31.0
06	2.67	0.214	0.249	0.372	2.10	1.86	1.40	5.46	6.38	9.33	13.4	2.77	31.1
07	0.47	0.122	0.149	0.187	1.94	1.72	1.27	13.6	14.3	16.1	2.35	1.16	31.0
08	0.75	0.136	0.151	0.189	2.01	1.79	1.32	11.2	12.1	14.9	3.76	1.28	30.8
09	0.57	0.259	0.330	0.400	2.15	1.95	1.54	17.9	21.0	25.2	2.84	2.93	30.7
10	2.87	1.85	2.16	2.77	1.92	1.71	1.28	34.6	38.9	45.2	14.1	20.7	30.7

1.

2.

Errors		(%)	IAC (%)
Bias error	Distance Between Sensor Tips		0.5
	Channel Averaging	3.0	3.0
	Acq&Threshold Effect (Le Corre, 2001)	10.0 (가)	10.0 (가)
Random Er	ror	1.83~11.0	3.2~12.2
Total Unce	rtainty	10.6~15.2	10.9~16.1

1. Five-Sensor Conductivity Probe

3.

5. Conductivity Probe Spoolpiece

6. Five-Sensor Conductivity Probe

)

10. Case 08 (j_go=0.127, j_f=0.75, α_0 =10.5%)

