1400MWe PWR *. 150 103-16 1962 TID-14844 NRC TID-14844 . NUREG-1465 40 1400MWe 가 NUREG-1465 30 , Xe I/Cs/Te/Ba NUREG-1465 MELCOR1.8.4 1400MWe 가

2002

Abstract

TID-14844, which was issued in 1962, has been used for regulatory applications of source term under design basis accidents. But recently, USNRC issued NUREG-1465 for regulatory purposes, which represented more realistic source term than TID-14844 did. NUREG-1465 was based upon research results and insights for accident source terms obtained over 40 years in PWRs. In order to keep up with these trends, in-containment source term calculations for LLOCA (Large Loss of Coolant Accident) at 1400MWe PWRs is calculated and compared with NUREG-1465 source term. According to the results, in case of emergency safety injection recovery at 30 minutes into the accident, maximum atmospheric concentration of I/Cs/Te/Ba radionuclide groups appeared to be a little larger than NUREG-1465 source term while Xe is smaller. This study provides not only new source term data using MELCOR1.8.4 and its state-of-the-art models but also evaluating basis for mitigation capability under severe accidents at 1400MWe PWR.

1.

TMI 가 . (PHEBUS [1], ISP44 [2]) 가 (: , MELCOR 1.8.5 RN) MELCOR 가 . NRC , (10CFR50) (Revised or New Source Term) , . Regulatory Guide 1.183 [3] , NRC (Arg. 1986; 51FR28044) (2000.7), 가 / 1400MWe 가 가 . (Large Loss of Coolant Accident : LLOCA) 2 [4] MELCOR State-of-the-Art (1.8.4) . 2. () +++. 가 가 가 (Success Criteria) 4 . , 가 (SIP) 2 (= 140 kg/) 30 가 IRWST .

.

(In-Containment Refueling Water Storage Tank)

(Bounding Calculation)

Term)

가

3.

< .1>

.

.

< .1> < .5>

	[]
	100
	100
	100.14
	101.17
	109.46
(Ring2/Ring1/Ring3)	122/139/1113
$(cell \geq (=1173K))$	
	302
(Ring1/Ring2/Ring3)	1399/1407/1446
(UO ₂))	
	1899

.1

(steady-state) 100 0.9116 m² (= 100 (guillotine break) . 2 21) х . 가 (MSIV)가 가 (cavitation) . 10 (< .1>) (= 610 Psia) 4 (= 가 200) (SIT) .2>). SIT (< 가 가 (1/2) (< .3>). 가 1173 K 122 139 (< .4>) (gap release) (3) . (SIP) 가 (= 1825 Psia) (safety Injection Actuation Signal)

SIP가 . 30 SIP가 가 (< .5 >). < .1> 3 SIP . SIT < .3> SIP • 1300 1800 UO_2 (fuel release) SIP . . SIP 가 IRWST . 4. 30 (= 3800) . , (pool) (deposition) (settlement) (*.AT) TID-14844 NUREG-1465 [5] (pool) (*.PL) . (*.TOT) . CCI (Corium Concrete Interaction) . . . < .2>) NUREG-1465 (= ((early in-vessel release)) MELCOR . cell **7** (=1173K) NUREG-1465 (puffradial ring type) cell NUREG-1465 16 MELCOR .

9 MAAP (mapping) . Xe CsI

.

< .6> < .7>

			(Xe)	80%	가			가
. (CsI		80%가						
50%가									
가		. Cs	Te		CsI				. ,
MELCOR					3가		(CORSC	OR, CORSOR-M	, CORSOR-
BOOTH)									
			([6])		
	. CORSOR-M						CORS	OR	
	Te							50%	10%
		<	.8>		Ba (Sr)		10% 가	
						•			

					22.5%		NUREG-
1465			(Low Zr	Oxidation	n case < 5	0%)	
NUREG-1465				(High Zr	Oxidation	case >	50%)
가	가	가					

			* :
			*
	LLOCA	300 /~5	900 /~15
/	N-1465	NA/~30	NA/~1.3
	LLOCA	0.05	0.8
Xe(1)	N-1465		1.0
	LLOCA	0.05	0.5
CsI(16)	N-1465		0.40
	LLOCA	0.05	0.5
Cs(2)	N-1465		0.30
	LLOCA	0.0	0.1** (0.5)
Te(5)+Cd(11)	N-1465 (N-5747)		0.05 (0.15)
	LLOCA	0.0	0.08
Ba(3)	N-1465(Mean/Median/75 th)		0.02 (0.04/0.003/0.009)

.2 NUREG-1465

5.

** CORSOR

MELCOR1.8.4						()
30							
				가			
30	,					가	
	15	()	NUREG-1465		
1/5 .		(Xe)	80%가			
NUREG-1465	100%		, Xe				
I/Cs/Te/Ba		NURE	G-1465				
		15	2	Xe/I/Cs/Te	e/Ba		
5%							
	TID-14844		Ν	UREG-14	65		

가

30

가

- 1. W.Krischer and M.C.Rubinstein (1992), "The PHEBUS Fission Product Project", Elsevier Applied sCience
- 2. Y.M.Song (2001), MELCOR 1.8.4 KAEVER

15

1400MWe

MELCOR1.8.4

- ISP44, Proceedings of the KNS '2001 Spring Meeting.
- 3. USNRC (2000), Regulatory Guide 1.183: Alternative Radiological Source Term for Evaluating Design Basis Accidents at Nuclear Power Reactors.
- 4. SNL (1990), MELCOR Computer Code Manuals, NUREG/CR -6119, SAND97-2398.
- 5. USNRC (1995), Accident Source Terms for Light Water Nuclear Power Plants, NUREG-1465.
- 6. KAERI (1998), MELCOR1.8.4 PHEBUS FPT1 , KAERI/TR-989/98.

.4 IRWST

.8 Te