

Abstract

Clad ballooning may substantially decrease the flow of fluids through the affected core region and may expose the inner cladding surface to oxidation in the vicinity of rupture sites. The cladding ballooning model was not included in MELCOR 1.8.4. and consideration of incorporating the cladding ballooning model is scheduled as a post-1.8.4 release activity. The purpose of this paper is to analyze the effect of the clad ballooning model by the modified MELCOR 1.8.4 with this model. The typical accident sequence of a large LOCA scenario is selected. The clad ballooning model accelerates the accident progression compared to that without the ballooning model. The amount of hydrogen does not change much and it may be caused by ignoring the effect of flow area change. Future study is planning to analyze the flow redistribution.

1.

.

() 가 가

 가,
 (hydraulic diameter)

 .
 가
 ,

 가,
 가
 upper plenum-core

 MELCOR 1.8.4
 ,
 .

 MAAP4 [1]
 SCDAP/RELAP5 [2]
 .

 MELCOR 1.8.4 [3]
 가
 MELCOR

2. MELCOR

가

.

.

fuel pin 가 . . , , fuel pin 가 가 upper plenum-core .

. MELCOR 1.8.4 MAAP . 가 NUREG/CR-0497 [4] SELAP elastic-plastic deformation mechanistic model hoop stress가 burst stress , 가 Zircaloy () 가 .

2.1 Burst Stress

tangential failure burst stress ($\sigma_{\theta B}$)

[5]

LOFT LP-FP-2, PBF SFD 1.4, CORA-15,

TMI-2

:

$$s_{qB} = 1.36 K_A \qquad T < 750K$$

$$s_{qB} = 46.86 K_A \exp\left(\frac{-1.99 \times 10^6}{T^2}\right) \qquad 750 \le T < 1050K \qquad (1)$$

$$s_{qB} = 7.7 K_A \qquad T \ge 1050K$$

 \mathbf{K}_{A}

$$K_{A} = 1.18 \times 10^{9} + T [4.55 \times 10^{5} \qquad T < 750K + T(-3.28 \times 10^{3} + 1.73T)] K_{A} = 2.52 \times 10^{6} \exp \left(\frac{2.86 \times 10^{6}}{T^{2}}\right) \qquad 750 \le T < 1090K K_{A} = 1.84 \times 10^{8} - 1.44 \times 10^{5} T \qquad 1090 \le T < 1255K K_{A} = 4.33 \times 10^{7} + T [-6.69 \times 10^{4} + T (37.58 - 7.33 \times 10^{-3} T)] \qquad T \ge 1255K$$

$$(2)$$

2.2 Hoop Stress

hoop stress

.

$$\boldsymbol{s}_{H} = \frac{(P - P_{PS})r}{t}$$
(3)
P 7, P_{PS} , t , r

:

(t) (r) :

$$t = \frac{t_o}{1 + e}$$
(4)

$$r = r_o (1 + e)$$
(5)

 t_{o} , r_{o} , ϵ

2.3 MELCOR

LOFT	가	[5]	MELCOR	[3]						
	ME	LCOR	1.8.4							
MELCO	R		가			가			가	,
				1				cell		
RNG	GAPijj00			default	1173K (900	C) [3]				
				cell	channel co	ontrol volu	ıme		, CORijj01	

•

,

2.4

1.8.4 subroutine CORRN1 가

.

MELCOR

. AHTOX(ICL,IA,IR) =

ASURC(ICL	L,IA,IR) * (1 + FECL(i	j))	FECL			Fuel Rod	Strain Ratio ,
		AHT	TOX가	가		가	. CORRN1
subroutine	MELCOR		,	,		,	
,	가		COR p	ackage			
3.		가					
						,	
					(0.5 ft ²)	
				가		[6]	
(AHTOX)	CLAD						,
(1110/1)							·

3.1 .

					114 ,
				dryout	(6030)
	(6043)가	,		(7614)가
	(7717)	103	,		(7639) 가
(7789) 150		,		
	.(1)				

3.2

		(FI	ECL)			
MELCOR	,		3	13		
		1,2,3			•	30

,

			•	2 4295			
	(0),	
11,12,24,25,36	37	가		Peaking factor			
	•			11,24, 37			
가 .							

			,	1
4295	가	2		

1. "MAAP4 (Modular Accident Analysis Program for LWR Plants Code) Manual,"EPRI, May 1994.

- 2. "SCDAP/RELAP5/MOD2 Code Manual, Volume4: MATPRO-A Library of Material Properties for Light-Water-Reactor Accident Analysis," NUREG/CR-5273,EG&G-2555,Vol.4 R3, February 1990.
- 3. R.M. Summers, et al., "MELCOR Computer Code Manuals (Version 1.8.4)," SNL, NUREG/CR-6119, SAND97- 2185, July 1997.
- D. L. Hagman, G. A. Reymann, and R. E. Mason, MATPRO Version 11 (Revision 1) A Handbook of Material Properties for Use in the Analyses of Light Water Reactor Fuel Rod Behavior. NUREG/CR-0497, TREE-1280, February 1980..
- 5. L.N.Kmetyk, MELCOR 1.8.1 Assessment: LOFT Integral Experiment LP-FP-2, SAND92-1373, Sandia National Laboratories, Albuquerque, NM(December 1992).
- 6. S.Y.Park, "Accident Analyses on TMLB' and LOCA for KNGR using MELCOR Code," KAERI, KAERI/TR-

1677/2000, November 2000.

	Without Bal	looning Model	With Ballooning Model		
	Time(sec)	Integrated	Time(sec)	Integrated	
		H2 mass (kg)		H2 mass (kg)	
- LOCA Initiation	100		100		
- Core Uncovery					
Top of fuel (-1.592 m)	114	0	114	0	
Half core (-3.49 m)	180		180		
Core dryout (-5.40 m)	6043		6030		
- Initiation of Zircaloy	3860	9.07E-2	3860	9.07E-2	
cladding oxidation					
- C	4100	5.60	4100	6.01	
	4300	54.13	4300	58.86	
	4600	261.54	4600	265.46	
	4840	363.74	4840	363.50	
	6000	363.74	6000	363.50	
- Core collapse / Core	7717	395	7614	390	
support Plate Failure					
- Vessel Failure	7789	395	7639	390	

2.		429	95	FECL	
	FECL		FECL		FECL
13	2.08 E-6	26	7.92 E-6	39	2.21 E-6
12	3.60 E-1	25	3.60 E-1	38	1.64 E-1
11	3.60 E-1	24	3.60 E-1	37	3.60 E-1
10	4.41 E-2	23	1.87 E-2	36	3.60 E-1
9	2.08 E-6	22	7.94 E-6	35	2.21 E-6
8	2.08 E-6	21	7.94 E-6	34	2.21 E-6
7	2.08 E-6	20	7.94 E-6	33	2.21 E-6
6	2.08 E-6	19	7.93 E-6	32	2.21 E-6
5	2.08 E-6	18	7.93 E-6	31	2.21 E-6
4	2.08 E-6	17	7.92 E-6	30	2.21 E-6
3	0	16	0	29	0
2	0	15	0	28	0
1	0	14	0	27	0

	Without	With	With		
	Ballooning Model	Ballooning Model	Ballooning Model		
	(*)	(*)	(Stress)		
	Time (sec)	Time (sec)	Time (sec)		
11 (1st Ring)	3960	3950	3895		
24 (2nd Ring)	3908	3900	3795		
37 (3rd Ring)	4233	4225	4095		

* : 1173 K

1. 11,24, 37 FECL

2. 11 Cladding

3. 24 Cladding

4. 37 Cladding