

This paper describes the characteristics of core thermal-hydraulic model using VIPRE KEPRI version for 3 loop plant of Westinghouse type loaded with Vantage 5H fuel and the results of sensitivity analysis for the main modeling parameters. The developed model was benchmarked with the FSAR results obtained from THINC code. The benchmarking analyses show that VIPRE subchannel modeling is consistent with the Westinghouse THINC code.

VIPRE(<u>V</u> ersatile <u>I</u> nternals a	and Component <u>P</u> rogra EPRI	am for <u>RE</u> actors) Battele Pacific N	lorthwest Lab.
USNRC 가	가	[1,2]. VIPRE
	DNB		DNBR
CONDITION IV non-LC VIPRE	OCA (LOCA)	가	
RETRAN-VIPRE Non-LOCA		WRB - 1	VIPRE
VIPRE-01 KEF	PRI HP-9000 Version		
가 Vantage 5H	1/2	VIF	RE
THINC	VIPRE		,
2. VIPRE			
PWR (DNB)	DNB	. DNB	
/==			
(DNB Ratio: DNBR)	VIPRE		(,
, ,		DNBR .	
VIPRE		, neutronics	
. RETRAN RELAP	C	NBR	,
,	alaar antholov rice he	t channel factor :	$F^{N_{\text{res}}}$
	clear enthalpy rise no		<i>г _{ДН})</i>
	7L		
PWR VIPRE	one-pass		. one-pass
(hot channel)			
Lumped . VIPRE or	ne-pass	multi-pass,	
multi-stage cascade		. multi-pass	
2	. multi	-pass	one-pass
. one-pass		heated/we	tted perimeter
lumped . . VIPRE one-pass	lumped PWR DNB		USNRC 가

1

1/2 157 17×17 Vantage 5H 264 , 24 , 1 [3]. 가

" (Hot Channel)" Lumped Channel MDNBR , MDNBR 가 가 . 1 1/2 1/8 1 1/8 14 16 (Minimum DNBR : MDNBR) Thimble Typical Cell Cell Cell Lumped Cell(4 cell) . 가 16 12 4 Lumped .

VIPRE 가 , WRB-1 WRB-2 grid 가 . ,

46 3.5 " . VIPRE Dummy Rod Conduction Rod . VIPRE Conduction Rod . 6

2 . Dummy Rod DNBR Dummy Rod VIPRE . (97.4%) プト フト

.

2.2

VIPRE (Power Factor) (1) . Dummy Rod , . N z .

 $q''(z, N) = F_z \times F_N \times q''_{avg}$ ⁽¹⁾

, $F_z =$ $F_N = N$

$$q''_{avg} =$$

100%

. 가 가 (Nuclear Enthalpy Rise Hot Channel Factor : $F^{N}_{\Delta H}$) [4]. $F^{N}_{\ arDelta H}$ 가 가 1/2 $F^{N}_{\Delta H}$ 100% 100% 1.59 $F^{N}_{\ arDelta H}$ (2) $F_{\Delta H}^{N} = 1.59 \times (1 + 0.3 \times (1 - P))$ (2) [3] Р , , 1/2 (axial blanket) 가 1.55 Chopped Cosine (Core Thermal Limit) , RCP . , Non-OT T 가 (Axial Offset)가 6.85% WCAP-9500 , 1/2 가 가 [5]. 가. 2.3 2.3.1 (Turblent Mixing) VIPRE (Turbulent Mixing Coefficient : ABETA) (Turbulent Momentum Factor : FTM) . 가 DNBR 가 . 2 가 . VIPRE (ABETA) . VIPRE $\frac{Q_m}{\Delta x} = \sum w' \times \Delta h$ (3) $w' = ABETA \times S \times G_{avg}$

,

 $Q_m = , Btu/hr$ $\triangle x = , ft$

$$w' = (cross flow), lbm/ft-s$$

$$\Delta h = , Btu/lbm$$

$$ABETA = S = (Gap Width), ft$$

$$G_{ave} = , lbm/ft^2 - s.$$

$$1/2 \text{ DNB THINC TDC 0.038}$$

$$.[5] (FTM) 0.1 1.0 0.0$$

$$1.0 0.0$$

$$1.0 0.0$$

$$1.0 0.0$$

$$1.0 0.0$$

$$1.0 0.0$$

$$1.0 0.0$$

$$1.0 0.0 \text{ FTM}$$

$$0.8 [4]. 1/2 \text{ VIPRE FTM 0.0 FTM}$$

. VIPRE

$$\Delta P = K_{G} \frac{v \left[w \right] w}{2S^{2}g_{c}}$$
(5)

(6)

·

.

•

•

,
$$K_G =$$

 $v' = (ft^3/lbm)$
 $w = (lbm/ft-s)$
 $S = (Gap Width)(ft)$

$$K_G$$

VIPRE

 $K_G = a_G R e^{b_G} + c_G \tag{6}$

,
$$a_G$$
, b_G $c_G = Re =$

6 0.3 0.6 , PWR [7]. 1/2 VIPRE 0.5 .

form loss . VIPRE

$$f = \max\left(f_{turbulent}, f_{laminar}\right) \tag{7}$$

,
$$f_{turbulent} = 0.184 \times Re^{-0.2}$$
 [8]
 $f_{laminar} = \frac{-64.0}{Re}$

VIPRE THINC

Rohsenow-Clark

, Rohsenow-Clark lower core plate, bottom nozzle, grid spacer, top nozzle upper core plate Vantage 5H 5

2.3.4

2 1) Subcooled Void Correlation 2) Bulk Void Correlation 3) 2- Friction Multiplier 3 . Subcooled Void Correlation Bulk Void Correlation 가 . 2- Friction Multiplier 가 2 7 VIPRE Subcooled Void Correlation, Homogeneous Bulk Void Homogeneous 2-Levy Friction Multiplier VIPRE . DNBR .

2.4

DNB VIPRE . VIPRE , , (Engineering Enthalpy-Rise Hot Channel Factor : $F_{\Delta H}^{E}$), (Engineering Heat Flux Hot Channel Factor : F_{Q}^{E}), $F^{E}_{\Delta H}$, , $F^{E}_{\Delta H}$, , U-235 Standard Thermal-Hydraulic Design F^{E}_{AH} Method (STDP) (Deterministic Method) $F^{E}_{\Delta H}$. VIPRE Multiplication Factor

1/2					ST	DP	
	1.	021		[5].			
,	Im	proved Th	ermal-hydı	raulic Desi	gn Proc	edure (ITDP)	[9]
	$F^{E}_{\ arsigma}$			(DNBR D	esign Li	mit)	
		ITDP				F_{\perp}^{I}	E 4H
	MDNBR	DNBR					
F^{E}_{Q}		3		,	,		
	[5].			DNB	•	F^{E}_{Q}	
			(8)	VI	PRE DN	BR	[10].
	MDN	$VBR = \frac{DN}{F}$	$\frac{BR_{c}}{Q}$				(12)
, <i>1</i>	DNBR _c vif	'RE		MDNBR		1/2	$F^{E}_{\ Q}$
1.033	. ,			$F^{E}_{{\it \Delta} H}$	가	DNBR	(DNBR
Design Lin	nit)				_	ITDP	F^{E}_{O} 1
[5]].						- Q .
PWR 기	USNRC- 7 [5].	• THINC				5%	VIPRE
	(Stack Heig	ht)					
		·				가	
-	(fuel active	height)		stack he	ight fac	tor .	Stack Height
Factor						1/37"	[11]
	143.	7"				143.7	[' '].
3.							
			Hot	Thimble	Typic	al Cell	
(layer)					71 -	EPF	RI VIPRE QA
Report	1						
1	, 39	1	(14 MDNBR)	39 (Thimb	le Cell : -0	.43%, Typical
Cell : -1.6	0%)		2				E2 80 100
Node			۷			JZ, 40, 40,	55, 60, 100
,							가
	MDNBR 0.	1% 1.5	%		1	THINC	
	c	Subcooled '	Void Satur	ated Void	46 Two	-nhase Multi	Nier
	<u> </u>	JUDGOOIEU	voiu, oatur		1 00 0	Phase Multi	phot

1 R	adial	Noding	J
-----	-------	--------	---

shan "	MDN	BR	% DNBR Change	
cnan. #	Thimble CH.	Typical CH.	Thimble CH.	Typical CH.
14	2.576	2.690	0.00	0.00
39	2.587	2.733	-0.43	- 1.60

2 Axial Noding

Node #	Node size	MDNBR		%DNBR Change (46 Node)	
Node #	(in)	Thimble CH.	Typical CH.	Thimble CH.	Typical CH.
32	5.0	2.577	2.691	- 0.039	-0.037
40	4.0	2.614	2.726	- 1.475	- 1.338
46	3.5	2.576	2.690	0.000	0.000
53	3.0	2.571	2.732	0.194	- 1.561
80	2.0	2.57	2.700	0.233	-0.372
100	1.6	2.54	2.673	1.398	0.632

가 . 가

	. 3			MDNBR		
, 1	1	(EPRI/EPRI/	EPRI)	LEVY	
	가			WRB-2	Data Base	
MDNBR		. 4	LEVI/Homo/Hom	no EPRI/EPRI/	EPRI	
MDNB	R		5		LEVI/Homo/Homo	
EPRI					MDNBR	
Void	LEVI	/Homo/Homo				
VIPRE	Vo	id	가	가		
7	'ŀ.					

o Single Phase Forced Convection

- EPRI : Dittus-Boelter + 0.023 Leading Coeff.

- DITB : Dittus-Boelter

o Subcooled Nucleate Boiling

- THSP : Thom+single phase

- CHEN : Chen Correlation

- THOM : Thom Correlation

- JENS : Jens-Lottes Correlation

		Sub.	Dulk Void	2 phase	MDNBR	% DNBR
		Boilina	Buik void	Mult.		Change
		Doning		manti	Thimble	Thimble
reference	Case	LEVY	Homo	Homo	2.57619	0.0000
	1	EPRI	EPRI	EPRI	2.57334	-0.1106
1	2	EPRI	Homo	EPRI	2.57653	0.0132
1	3	EPRI	ARMA	EPRI	2.57652	0.0128
	4	EPRI	ZUBR	EPRI	2.57653	0.0132
	1	LEVY	EPRI	EPRI	2.5758	-0.0151
2	2	LEVY	Homo	EPRI	2.57615	-0.0016
2	3	LEVY	ARMA	EPRI	2.57621	0.0008
	4	LEVY	ZUBR	EPRI	2.57617	- 0.0008
	1	LEVY	EPRI	Homo	2.57578	-0.0159
2	2	LEVY	Homo	Homo	2.57619	0.0000
3	3	LEVY	ARMA	Homo	2.57626	0.0027
	4	LEVY	ZUBR	Homo	2.57624	0.0019

3 Void

4 WRB-2 Data Base Void

WRB-2	WRB-2 MDNBR(Average)		
Test Group	LEVI/Homo/Homo	EPRI/EPRI/EPRI	
A2	1.0272	1.0290	-0.0019
A3	0.9965	0.9976	-0.0011
A4	1.0199	1.0213	-0.0014
A5	1.0240	1.0244	-0.0004
A6	0.9693	0.9709	-0.0015
A7	0.9920	0.9934	-0.0014
A8	1.0159	1.0164	-0.0005
A9	1.0301	1.0306	-0.0005
A10	1.0086	1.0096	-0.0010
A11	1.0077	1.0083	-0.0006
A12	1.0192	1.0212	-0.0020

- o Saturated Nucleate Boiling
 - THSP, CHEN, THOM

.

, EPRI-THSP-THSP EPRI-THOM-THOM, DITB -JENS-THOM

2

EPRI-THSP-THSP

•

. 2

•

DITB-CHEN-CHEN

(psia)	2270	가 (2250 psia)+
(10.2)		(20psia)
()	557.1	
(Mlbm/hr-ft ²)	2.48	
(Mbtu/hr-ft ²)	0.1898	100%
$F^{N}_{\ arDelta H}$	1.59	
	1.55	
	Chopped Cosine	

5 2

6 2 VIPRE

	MDNE	MDNBR		
	FSAR	VIPRE	70	
Thimble	2.53	2.576	1.8	
Typical	2.67	2.69	0.7	

2 Improved Thermal-Hydraulic Design Procedure(ITDP) (Nominal Condition) .

	5.	6	5	VIPRE		
	THINC				. 6	Thimble
Cell	Typical Cell			MDNBR	1.8% 0.7%	

	2
٠	-

(RCP) . 가 가 . DNB가 . 10% RCP

4.

7		
(psia)	2270	가 (2250 psia)+ (20psia)
()	557.1	
(Mlbm/hr-ft ²)	0.182815	96.32%
(Mbtu/hr-ft ²)	0.70004	68.55%
$F^{N}_{\ {\it \Delta} H}$	1.59	
	WCAP-9500	

8	VIPRE			
	MDNE	0/		
	THINC	VIPRE	%	
Thimble	1.827	1.8069	- 1.1	
Typical	1.847	1.8166	- 1.6	

				ANS condition	n III	
DNB		DNE	3	С	ondition II	
	7	2 10		LOFTRAN		
	, LOFTRAN	68.55%			96.32%	MDNBR
		. 8 VIPRE		THINC		
	, VIPRE가 THINC	Thimble Ce	ell	1.1%, Typica	al Cell	1.6%

(Locked	Rotor)
(,

		가	RCS
RCS		가 .	가
		. 가	
가		PORV	
Condition		10 CFR 100	
		, 1	(
110%)	THINC	

(psia)	2270	가 (2250 psia)+ (20psia)
()	557.1	
(Mlbm/hr - ft ²)	1.240992	50.04%
(Mbtu/hr-ft ²)	0.184429	97.17%
$F^{N}_{\ arDelta H}$	1.59	
	WCAP-9500	

10	VIPRE			
	MDNBR		0/	
	THINC	VIPRE	70	
Thimble	1.437	1.4534	1.14	
Typical	1.368	1.3985	2.23	

DNB7 ''Rods-In-DNB''THINC
DNBR(Safety Analysis Limit DNBR)Limiting $F_{\Delta H}^N$ Rods in DNB7 . VIPRELOFTRANMDNBR<td.</td>

10 LOFTRAN 9 2 9, 96.32% 68.55% MDNBR VIPRE THINC 10 10 . . 1.14%, Typical Cell , VIPRE가 THINC Thimble Cell 2.23% .

	Vantage 5H		3	VIPRE
KEPRI				
	Т	HINC		
	THINC	FSAR		,
	VIPRE	THINC		

- Letter from C. E. Rossi (USNRC) to J. A. Blaisdell (UGRA Executive Committee), "Acceptance for Referencing of Licensing Topical Report, EPRI NP-2511-CCM, 'VIPRE-01 : A Thermal-Hydraulic Analysis Code for Reactor Cores', Volumes 1,2,3 and 4", May 2, 1986.
- Letter from A. C. Thadani (USNRC) TO Y. Y. Yung (VIPRE-01 Maintenance Group), "Acceptance for Referencing of the Modified Licensing Topical Report, EPRI NP-2511-CCM, 'VIPRE-01 : A Thermal-Hydraulic Analysis Code for Reactor Cores', (TAC NO. M79498)", October 30, 1993
- 3. " FSAR Revisionfor V5H Core(Chapter 4,15)," , 1966
- 4. NP-2511-CCM-A, "VIPRE-01: A Thermal-Hydraulic Analysis Code for Reactor Cores", Volumes 2(Revision 3, August 1989), Volume 4(April 1987), C. W. Stewart, et al., Electric Power Research Institute.
- 5. "Thermal-Hydraulic Design Procedure Manual," Volume 1&2, Westinghouse Electric Corporation, 1990
- "Handbook of Hydraulic Resistance," I.E. Idelchick, 3rd edition, p. 717, CRC press, 1994
- NP-2511-CCM-A, "VIPRE-01: A Thermal-Hydraulic Analysis Code for Reactor Cores", Volumes 4(Revision 3, August 1989), Volume 4(April 1987), C. W. Stewart, et al.,Electric Power Research Institute.
- 8. "Thermal analysis of Pressurized Water Reactors," 3rd Edition, L.S. Tong, J. Weisman, p. 245, American Nuclear Society, 1996
- 9. "Thermal-Hydraulic Engineering Service Manual, "Westinghouse Electirc Coporation, 1990
- NP-2511-CCM, "VIPRE-01: A Thermal-Hydraulic Analysis Code for Reactor Cores", Volumes 5(Revision 3, August 1989), Volume 4(April 1987), C. W. Stewart, et al., Electric Power Research Institute.
- 11. WCAP-8219-A, "Fuel Densification Experimental Results and Model for Reactor Application," J. M. Hellman (Ed.), Westinghouse Electric Corporation, Oct. 1973

1 1/2 1/8

