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ABSTRACT 

 
An improved one-dimensional two-fluid model with appropriate momentum flux 
parameters is proposed, which is stable in the whole range of flow regime. A linear 
stability analysis is performed for a two-phase channel flow described by an improved 
one-dimensional two-fluid model. For a two-phase flow in a dispersed flow regime, an 
analytical expression for the growth factor is derived as a function of wave number, 
void fraction, drag coefficient, and relative velocity. It is demonstrated that the two-
phase channel flow can be properly described by the proposed one-dimensional two-
fluid model in the whole range of flow regime, while the basic form of the one-
dimensional two-fluid model renders the system mathematically ill posed. It is also 
shown that the proposed model is applicable in a practical range of density ratio.  
 
1. Background  

The one-dimensional two-fluid model is widely used in describing complex two-
phase flow systems[1,2]. However, it is well recognized that the basic form of the 
governing differential equations for the one-dimensional two-fluid model is 
mathematically ill posed [3,4,5]. Though there have been efforts to improve the one-
dimensional two-fluid model [6, 7, 8, 9, 10], the issue is still unresolved. Recently, Song 
and Ishii [11, 12] proposed to consider the void fraction and velocity distribution in the 
flow channel by use of the momentum flux parameters in the one-dimensional two-fluid 
model.  

In the present paper a completely well posed one-dimensional two-fluid model is 
proposed. A linear stability analysis in a similar manner to that of Ramshaw and Trapp 
[4] and Pokharna, Mori and Ransom [13], is performed for a channel flow described by 
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an improved one-dimensional two-fluid model, where appropriate momentum flux 
parameters are proposed. It is shown that the proposed one-dimensional two-fluid 
model describing a two-phase flow in a flow channel is stable in the whole range of 
flow regime and in a wide range of density ratio.  

 
2. A general form of the one-dimensional two-fluid model 

By defining the area average and void fraction weighted average quantities as 
below 

 
           <F>=1/A ∫ F dA                        (1) 

               <<Fi>> = < αiFi>/<αi>                    (2) 
 

Let us denote α=<αi>, ui=<<ui>> and assume that the density of each phase is uniform 
such that ρi=<<ρi>>. The incompressible two-phase flow in a vertical channel is 
described by the generalized one-dimensional two-fluid model [14, 15, 16]  as below  
 
           αρg∂ug/∂z +ρg∂α/∂t+ρgug∂α/∂z = 0     (1) 
           αfρf∂uf/∂z-ρf∂α/∂t-ρfuf∂α/∂z = 0       (2) 
         αρg∂ug/∂t + αρg(2Cvg-1)ug∂ug/∂z + ρg(Cvg-1)ug

2∂α/∂z  
                         = - α∂p/∂z + αρgg - FI + Mig     (3) 

       αfρf∂uf/∂t + αfρf(2Cvf-1)uf∂uf/∂z - ρf(Cvf-1)uf
2∂α/∂z  

                       = - αf∂p/∂z + αfρfg + FI+ Mif     (4) 
 

where αf=1-α, FI is the inter-phase drag, and Mig and Mif are the generalized drag force 
including the transient forces and wall drag. The Cvf and Cvg are the momentum flux 
parameters [15, 16] defined as  
 

Cvi=<αiui
2>/<αi><<ui>>2              (8) 

 
There is a fundamental diffeence between the single phase flow and two-phase 

flow in the role of momentum flux parameters. For the single-phase flow, the 
momentum flux parameter indicates only the effect of velocity profile. On the other 
hand, the momentum flux parameters for the gas and liquid phase in the one-
dimensional two-fluid model for the two-phase flow do not only indicate the effect of 
velocity profile but also the coupling between the velocity profile and void fraction 
profile.  
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As the values of these parameters are close to 1, the parameters are assumed to be 
unity in the conventional one-dimensional two-fluid models. So, the role of these 
momentum flux parameters are neglected. In the present analysis, we will explicitly 
model the momentum flux parameters to consider the coupling of void fraction profile 
and velocity profile by using existing correaltion for the dsitribution parameter[16] 
and velocity profile[17]. It is physically correct. And we will see the benefit of using 
them in terms of the stability of the one-dimensional two-fluid model.  

 
3. A Linear Stability Analysis 

By defining a vector ϕϕϕϕ = (α, ug, uf, p). The system of continuity and momentum 
equations in equations (1) to (4) can be written as  

 
    A ∂ϕϕϕϕ/∂t + B ∂ϕϕϕϕ/∂z + C = 0             (11)                   
 

where A, B, and C are matrices. To investigate the stability of  two-phase flow 
described by these equation, a linear stability analysis is performed. The linear 
differential equation for a perturbation, δϕϕϕϕ=ϕϕϕϕ-ϕϕϕϕo is written as 
 

Ao∂δϕϕϕϕ/∂t + Bo∂δϕϕϕϕ/∂t + [(∂A/∂ϕϕϕϕ)o(∂ϕϕϕϕ/∂t)o + (∂B/∂ϕϕϕϕ)o(∂ϕϕϕϕ/∂x)o+(∂C/∂ϕϕϕϕ)o]δϕϕϕϕ = 0  (12) 
 

where subscript o denotes the quantities at initial state.  
Let’s consider a perturbation in the form of a traveling wave  
 

                  δϕϕϕϕ=δϕϕϕϕoexp[i(kx-ωt)]            (13) 
 

where δϕϕϕϕo denotes the initial amplitude of the perturbation, k is the wave-number, and ω 
is the frequency in a complex number. The imaginary part of ω will govern the growth 
or decay of the perturbation and the real part determines the speed of propagation. On 
substitution of equation (13) into equation (12), a compatibility condition for δϕϕϕϕo is 
obtained 
 
 -iωAoδϕϕϕϕo+ ikBoδϕϕϕϕo + [(∂A/∂ϕϕϕϕ)o(∂ϕϕϕϕ/∂t)o + (∂B/∂ϕϕϕϕ)o(∂ϕϕϕϕ/∂x)o+(∂C/∂ϕϕϕϕ)o]δϕϕϕϕo = 0  (14) 
 
The condition for the existence of a non-trivial solution for δϕϕϕϕo is that the determinant 
of the coefficient matrix must vanish; i.e., 
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          Determinant of (- iωA + ikB + D ) = 0                         (15) 
D= [(∂A/∂ϕϕϕϕ)o(∂ϕϕϕϕ/∂t)o + (∂B/∂ϕϕϕϕ)o(∂ϕϕϕϕ/∂x)o+(∂C/∂ϕϕϕϕ)o]T             (16) 
 

By defining λ= λR+ iλI = ωR/k + iωI/k, equation (15) can be written as below for 
nonzero wave number k  
 

Determinant of (Aλ – B + i/k D) = 0               (17) 
 

For the case of a perturbation wave-length much smaller than the length-scale of the 
initial steady state or for an initial uniform steady state, (∂ϕϕϕϕ/∂t)o and (∂ϕϕϕϕ/∂x)o will be 
negligible so that D becomes  
 
                         D= (∂C/∂ϕϕϕϕ)o    (18) 
 

Let’s use a simple Darcy model suggested by Ishii and Zuber[18] for the interfacial 
drag to compare the analysis results with those of Pokharna et al. [13],    

 
             FI=1/2CDρf(ug-uf)|ug-uf|Ap/Vb = Kαρfur

2            (19) 
 
Then, the matrix C and D becomes  
 
               C = [0, 0, -αρgg + Kαρfur

2, -αfρfg - Kαρfur
2 ]    (20) 

D11= D12=D13= D14=0.               (21) 
                       D21= D22=D23= D24=0.              (22) 

        D31= Kρfur
2, D32= 2Kαρfur, D33= - D32, D34=0    (23) 

            D41= - D31, D42= - D32, D43= D32, D44=0.         (24) 
 

where it is assumed that CD is constant, Ap/V=3α/4rb. K equals 3/8CD/rb.  Let’s denote 
ur= ug-uf and αf=1-α. Let Φ*= iD31/k, Ω1*= iD32/k. The matrix (Aλ – B + i/k D) 
becomes 
 
   ρg(λ-ug)            -αρg                  0                 0       
   -ρf(λ-uf)             0                  -αfρf               0 
 -ρg(Cvg-1)ug

2+Φ*   αρg[λ-(2Cvg-1)ug]+Ω*       - Ω*            -α 
 ρf(Cvf-1)uf

2-Φ*        - Ω*           αfρf[λ -(2Cvf-1)uf] +Ω*    -αf    (25) 
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The determinant of the matrix (Aλ – B + i/k D) is calculated as   
 

        f(λ,k)=-αρgαfρf [ρgαf (λ2–2Cvgugλ+Cvgug
2)+αρf(λ2–2Cvfufλ+Cvfuf

2)] 
- ρgρf [Ω*αf(λ-ug) + Ω*α(λ-uf)] - αρgαfρfΦ*              (26) 
 

Note that for finite ω/k in the limit k → ∞, equation (17) reduces to the characteristic 
equation. And the dependence of the solution on the initial data can be reduced to an 
investigation of the roots of the equation 
 

          Determinant of (A λ - B) = f(λ) = 0                (27) 
 

The determinant of this matrix is calculated as  
 
     f(λ)= -α(1-α)ρgρf[(1-α)ρg(λ2-2λCvgug+Cvgug

2) + αρf (λ2-2Cvfufλ+Cvfuf
2 )]   (28) 

 
In the case of the basic form of the one-dimensional two-fluid model, where Cvg=Cvf=1, 
the equation f(λ)= 0 can have real roots only if λ=ug=uf.  So, the two-fluid model is 
mathematically ill posed. On the other hand, we can have real roots for λ for the 
equation f(λ)= 0, if the momentum flux parameters satisfy the following equation.   
 

P = (αfρg Cvgug+αρf Cvfuf )2 - (αfρg+αρf)(αfρgCvgug
2 +αρfCvfuf

2 ) ≥  0    (29) 
 

It suggests that the one-dimensional two-fluid model allows two real characteristic roots 
for λ by incorporating appropriate momentum flux parameters, which are related to the 
speed of the void fraction wave observed in the two-phase flow system [11, 19]. So, the 
necessary condition for the stability of the one-dimensional two-fluid model is defined 
by above inequality. 
 
4. Dispersion Relation and Stability Criteria 

Let Ω=D32/(αα f)=2Kρfur/αf and Φ=D31. The solution for f(λ,k) =0 is determined 
from the real and imaginary parts of equation (26) as below  

 
   ρgαf (λR

2–2CvgugλR+Cvgug
2- λI

2)+αρf(λR
2–2CvfufλR+Cvfuf

2-λI
2)- Ω/k λI =0  (30)   

     2ρgαfλI(λR–Cvgug)+2αρfλI(λR–Cvfuf)+ [λRΩ-Ωαfug-Ωαuf]/k+Φ/k=0 (31)   
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For convenience, let ρα= ρgαf+αρf, αu= ugαf+αuf. We can obtain the dispersion 
relation between wave number k and growth factor ωI from equation by combining 
equation (30) and (31)   
 

  g(ωI,k)=4ρα3ωI
4+8ρα2ΩωI

3+5ραΩ2ωI
2+Ω3ωI+k2(4ραωI

2P+4ΩωIP-Q)=0  (32) 
where P is the same one as that in equation (29) and Q is defined as   
 

         Q = αfρg[(Ωαu-Φ)2-2Cvgug( Ωαu -Φ)Ω+Ω2Cvgug
2] 

                     +αρf[(Ωαu-Φ)2-2Cvfuf(Ωαu-Φ)Ω+Ω2Cvfuf
2]    (33) 

 
From equation (32), it is seen that the solution of ωI for g(ωI,k)=0 at given k is 
determined by the intersection of following two curves  
 

          g1(ωI)= ωI [4ρα3ωI
3+8ρα2ΩωI

2+5ραΩ2ωI+Ω3]      (34) 
   g2(ωI,k) = - k2(4ραωI

2P+4ΩωIP- Q)              (35) 
 

Above equations can be rearranged as below  
 

 g1(ωI)= 4Ω4/ρα x(x3+2x2+5/4x+1/4) = 4Ω4/ρα(x+1/2)2(x+1)x = 0     (36) 
g2(ωI,k) = -k2(4ραωI

2P+4ΩωIP-Q)= - k2{4PΩ2/ρα(x+1/2)2-PΩ2/ρα-Q}  (37) 
where x=ωIρα/Ω.  

 
4.1 Stability of the basic form of the conventional one-dimensional two-fluid model  

In this case Cvf=Cvg=1 and P= - αfρgαρf (ug
2 - uf)2.  If there is no interfacial drag, 

Ω=0 and equation (32) becomes 
 

         g(ωI,k) = 4ρα3ωI
4 - 4k2ραωI

2αfρgαρf (ug-uf )2 = 0     (38) 
 
The growth factor is determined as  
 

ωI= k/(ρgαf+ αρf)ur (ρgαfαρf)1/2         (39) 
 

It can be seen that the growth factor is proportional to the wave number and relative 
velocity.  

When the interfacial drag is present, Q is determined as Q=αfρg[(Ωαu-Φ)-Ωug]2+ 
αρf[(Ωρu-Φ)-Ωuf]2. So, P is negative and Q is positive always. By using this 
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information, the typical shapes of curves in equation (34) and (35) can be represented 
by Fig. 1. We assumed k=0.5 or 1.0, P=-1.0, Ω=1.0, <ρα>=1.0, Q=1.0 for convenience. 
x=ωIρα/Ω represents the growth factor ωI. The function g1 has zeros at x=0, -1/2, -1.0 
and is always positive for the positive value of x, as it has the minimum value of 1/16 at 
–0.5+√2/4. The function g2 has a positive value of k2Q at x=0. Therefore, the function 
g1 and g2 will always intersect at the positive value of x. It means that the growth factor 
is always positive. So, the perturbation will grow with time and the system becomes 
unstable. From Fig. 1 we can see that the growth factor increases as the wave number 
increases. As the function g1(x) is proportional to Ω4, while g2 is proportional to Ω2, the 
growth factor decreases as Ω=2Kρfur/αf increases.  

These results are basically the same as that of Pokharna and et. al.[13], where 
nuemrical analysis was used to determine the growth factor. The present analysis has an 
advantage, as the same results are obtained in a much straightforward manner.      

 
4.2 An improved one-dimensional two-fluid model  

Let’s consider an improved one-dimensional two-fluid model with appropriate 
momentum flux parameters. Assume that the momentum flux parameters satisfty the 
necessary condition for the stability in equation (29). P is positive.  

In the case of no interfacial drag force, the dispersion relation in equation (32) 
becomes 

 
  g(ωI,k)= 4ραωI

2 [ρα2ωI
2+ k2 P ] =0     (40) 

 
As P is positive, it has a solution of ωI=0. The perturbation does not grow. When we 
consider the interfacial drag, the growth factor is determined from the intersection of the 
two curves in equation (34) and (35). Figure 2 illustrates the typical shape of the curves 
represented by equation (34) and (35). Here we assume that k=0.5, P=1.0, Ω=1.0, 
<ρα>=1.0, Q=1.0 or -0.5 for convenience.  

It can be seen that the curve g1 and g2 will intersect at positive value of x if Q is 
positive. If Q is negative, the two curves would not intersect at the positive value of x, 
because the curve g2 is always negative at the positive value of x. In this case the 
growth factor cannot be positive and the disturbance does not grow with time. So, the 
two-fluid model is stable to the disturbances at all wave numbers.  

So, it can be concluded that the sufficent condition for the stability is that Q is 
negative.  
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Q = αfρg[(Ωαu-Φ)2-2Cvgug( Ωαu -Φ)Ω+Ω2Cvgug
2] 

+αρf[(Ωαu-Φ)2-2Cvfuf(Ωαu-Φ)Ω+Ω2Cvfuf
2]  ≤ 0     (41) 

 
The first criterion in equation (29) makes the system of governing differential equations 
hyperbolic, which enables the propagation of void fraction wave. The second criterion 
in equation (41) gives a criterion whether the flow is stable to the small perturbations or 
not. If the second criterion is not met, it will cause the disturbance to grow and it might 
lead to a change in flow regime.  
 
5 Application of proposed arguments for a two phase flow in a channel  

To demonstrate the feasibility of using an improved one-dimensional two-fluid 
model, we apply the stability criteria to a typical steam-water two-phase flow in a 
chanel described by the proposed model.  

The first stability criterion in equation (29) and the second stability criterion in 
equation (41) can be written in a non-dimensional form by introducing the parameters S 
= ug/uf and R= αρf/((1-α)ρg).  The criteria can be presented in a non-dimensional form 
as functions of void fraction and density ratio as below  

 
P*(α,ρg/ρf) =P/(αρfuf)2 = (CvgS/R + Cvf)2-(1/R+1) (CvgS2/R+Cvf) ≥ 0     (42)   
Q*(α,ρg/ρf)= Q/(αρfΩ2uf

2)  
= 0.25(1/R+1)(1+α+αfS)2 – S/R[1-α(S-1)]Cvg - [S+α(1-S)]Cvf  ≤ 0  (43) 
 

By using above two criteria, we can investigate the adequacy of the improved 
one-dimensional two-fluid model in describing the two-phase flow in the vertical 
channel. We need to determine R, S, and momentum flux parameters a function of 
void fraction to evaluate above criteria. The effect of void profile over a cross-section 
is typically presented by the volumetric distribution parameter defined as  
 

             Co=<αj>/<α><j>                        (44) 
The global slip ratio S can be determined by using the Ishii correlation[15] for Co. 

 
           Co= (1.2-0.2√(ρg/ρf))(1-e-18α),   0< α < 0.7    (45) 

                 S=(1-α)Co/(1- Coα),             (46) 
 
The momentum flux parameters are not easily determined mathematically or 
experimentally in complex flow condition. Fortunatley, there are corrlations for 
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distribution parameter Co[15] and power of velocity profile [19] so that the momentum 
flux parameters for gas and liquid phase can be approximated by neglceting the local 
slip as discussed by Song and Ishii[11, 12].  It is a reasonable assumption for a two-
phase flow system, when the flow rate is not very slow. 
 
5.1  Bubbly and Slug Flow 
The velocity and void fraction distribution in a flow channel can be represented by a 
power law profile. By using experimental results of Welle [19], Song and Ishii [11] 
suggested that the power of velocity profile and void fraction profile for bubbly and 
slug flow in the void fraction range of 0.2 – 0.7 can be determined as  
 

                  m=10(1-α)                   (47)   
n= 0.5*(Co-1) – m – 2             (48) 
 

Then momentum flux parameters can be caculated from the equations below   
 
          Cvg = (m+2)/(m+1)[1+ (m+n+2)(Co-1)I(m,n)]/Co

2   (49) 
        Cvf = (1-α)(m+2)/(m+1)[1-α - α(m+n+2)(Co-1)I(m,n)]/(1-Coα)2   (50) 
 

where  I(m,n)=[1+(2m+2)/(m+n+2)]/(2m+2+n).  So, we know all the parameters to 
evaluate the stability criteria. 

It is interesting that these parameters are determined as a function of void 
fraction and density ratio. By picking up a saturated two-phase flow at 1.17 Mpa, the 
properties are determined as ρg=5.9795 kg/m3, ρf=879.55 kg/m3. The calculated liquid 
and gas momentum flux parameters for bubbly and slug flow are shown in Fig. 3. By 
using these momentum flux parameters, R, and S, we can calculate P* and Q* as a 
function of void fraction and density ratio. 

Figure 4(a) shows the non-dimensional quantity P*(α,ρg/ρf). To look at the 
general applicability of the argument in other thermodynamic condition, the density 
ratio is chosen between 0.01 and 0.001, the range of which is between the system 
pressure of the nuclear reactor and atmospheric pressure.  

It is shown that P*(α,ρg/ρf) is always positive, which meets the first stability 
criterion in equation (42). Figure 5(b) shows the non-dimensional quantity Q*(α,ρg/ρf). 
It is shown that Q*(α,ρg/ρf) is always negative, which meets the second stability 
criterion in equation (43). It means that the system of governirng differential equations 
of one dimensional two fluid model for describing the two phase flow is stable to the 
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small disturbances. It is consistent with the existence of bubbly and slug flow regime 
in a physical sense, while the conventional basic form of the one-dimensional two 
fluid model renders the system unstable.  

 
5.2 Wall-peaked bubbly flow 

When the void fraction is very low, the local void fraction tends to be in wall-
peaked profile [20, 21].  By following the procedure described in Song and Ishii [11]  
we can determine the void fraction and velocity profiles for the simplified wall-peaked 
bubbly flow at typical steam-water two-phase system. The parameters of n, m, and 
wall void fraction αw are proposed as    

 
             m=8              (51)   

           n= 0.4836/α , α ≥ 0.05  and  n= 0.4836/0.05 , α < 0.05  (52)           
αw = α[1 + 0.5(m+n+2)(1- Co)]  (53) 

 
As the power of void fraction profile at very low void fraction is maintianed the same 
as that of void fraction at 0.05. Also, the distribution parameter is modified as below at 
fraction below 0.05.  
 

Co= (1.2-0.2√(ρg/ρf))(1-e-0.9),   0< α < 0.05    (54) 
 

The momentum flux parameters are determined from equation (49) and (50). The 
calculated liquid and gas momentum flux parameters for the wall-peaked bubbly flow 
are shown in Fig. 5 for a saturated two-phase flow at 1.1.7MPa. By using these 
momentum flux parameters, R, and S, we can calculate P* and Q* as a function of 
void fraction and density ratio. 

Figure 6(a) shows the non-dimensional quantity P*(α,ρg/ρf) in the void fraction 
between 0.0 and 0.2. The density ratio is chosen between 0.01 and 0.001. It is shown 
that P*(α,ρg/ρf) is always positive. So, the first stability criterion in equation (42) is 
met. Figure 6(b) shows the non-dimensional quantity Q*(α,ρg/ρf). It is shown that 
Q*(α,ρg/ρf) is always negative, which satisfies the second stability criterion in 
equation (43).  

It is concluded that the proposed one-dimensional two-fluid model is stable in 
desribing the wall-peaked bubbly flow in a wide range of density ratio. This is 
consistent with the existence of wall-peaked bubbly flow at low void fraction.   
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5.3 Discussions 
The argument in the previous sections indicate that we can siginificantly improve 

one-dimensional two-fluid model by considering the coupling of velocity and void 
profile. The proposed model is mathematically well-posed and can describe the 
propagation of the void fraction wave in a wide range of flow regime including wall-
peaked bubbly flow, bubbly flow, and slug flow within a wide range of density ratio.  
Also as the proposed model is stable to the small disturbances at all wave lengths, it 
would not cause unphysical instability accompanied in the conventional one-
dimensional two-fluid model. So, the proposed model would be very powerful in 
describing the complex two-phase flow system, where multi-dimensional approach 
might not be pratical. The proposed argument could be extended to the separated flow, 
such as, annular flow as challenged in Song and Ishii 11. However, it might be 
conveneint to use seprated flow model for those flow regime.   
 
Acknowledgement:  The authors appreciate the support from the Ministry of Science 
and Technology of the Korean Government. 
 

 
Nomenclature 

A,  flow area of a channel  
A, B, C, matrices 
CD,  drag coefficient 
Cvi, momentum flux parameter of the i-th phase  
rb ,  radius of a bubble 
FI, interfacial drag   
Mik, generalized drag force for the i-th phase  
t , time 
ui , local velocity of the i-th phase, or  

void fraction weighted average velocity of the i-th phase    
z , axial direction along a flow channel 
 
Greek symbols 
α , local void fraction of gas phase or area averaged void fraction of gas phase   
ρi , density of the ith phase  
ϕϕϕϕ,  a vector  
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Subscripts 
f,g,i; liquid, gas, i-th phase 
o; quantities in the initial state  
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Fig.1 Plots of functions g1(x) and g2(x,k)         Fig.2  Plots of functions g1(x), g2(x,k,Q) 

at k=0.5, Q=1.0 or Q=-0.5                    with Ω=1 and k=0.5 or 1.0  
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Figure 3 Gas and liquid momentum flux parameters        Figure 4(a) Plots of P* for bubbly and 

slug flow  for bubbly and slug flow                      at density ratio of 0.1 and 0.001 

 

 

Figure 4(b) Plots of Q* for bubbly and slug flow    Figure 5 Gas and liquid momentum flux at density 

at density ratio of 0.1 and 0.001                 parameters for wall-peaked bubbly flow  
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Figure 6(a) Plots of P* for wall-peaked bubbly flow at density ratio of 0.01 and 0.001 

 

 

Figure 6(b) Plots of Q* for wall-peaked bubbly flow at density ratio of 0.1 and 0.001 
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