Vibration Characteristic Analysis for HANARO Fuel Assembly and Flow Tube Submerged in the Water

150

, ANSYS

18 36

가 16.1Hz 16.5Hz

Abstract

The vibration characteristics of HANARO fuel assembly and flow tube that submerged in the water have been investigated. For this purpose, the finite element models of the in-water fuel assemblies and flow tubes were developed. Then, modal analysis of the developed finite element models were performed by utilizing the ANSYS program. The analysis results show that the fundamental vibration modes of the in-water 18-element and 36-element fuel assemblies are lateral bending modes, and its natural frequencies are found to be 16.1Hz and 16.5Hz, respectively. For the verification of the developed finite element models, modal analysis results were compared with those obtained from the modal test. These results demonstrate that the natural frequencies of the first mode obtained from finite element analysis agree well with those of the modal test and the estimation of the hydrodynamic mass is appropriate.

1.

(Hi-flux Advanced Neutron Application Reactor) 30MW

가

.

(a) 18-element fuel assembly

(b) 36-element fuel assembly

Fig. 2 Schematic diagrams of the HANARO fuel assemblies

Table 1 Material properties of the HANARO fuel assembly

Components	Components Material		Poisson ratio	Density(kg/m ³)
Grapple head	Zircaloy-4	8.81×10^4	0.33	6550
Top guide	Inconnel	2.07×10^{5}	0.33	8420
Top guide spring	Inconnel	2.07×10^{5}	0.33	8420
Upper end plate	Aluminum	6.62×10^4	0.33	2680
Fuel element	U ₃ Si-Al	5.65×10^{4}	0.35	5350
Spacer plate	Aluminum	6.62×10^4	0.33	2680
Lower end plate	Aluminum	6.62×10^4	0.33	2680
Spring	Inconnel	2.07×10^{5}	0.33	8420
Central rod	Zircaloy-4	8.81×10^4	0.33	6550

Fig 3	Schematic diagrams	s of the HANARO flow tubes
1 1g. 5	Schematic diagrams	S OI THE HANAKO HOW THES

Table 2Material properties of the flow tube

Components Material		Young's Modulus(MPa)	Poisson ratio	Density(kg/m ³)
Flow tube shell	Zircaloy-4	8.81×10^4	0.33	6550
Spider	Zircaloy-4	8.81×10^4	0.33	6550
Receptacle	Stainless steel	1.88×10^{5}	0.28	8030

2.2.

3-D

3-D

가

가

[3,4].

,

[5,6]

3

Table 3 Hydrodynamic mass of the flow tubes and fuel assemblies of HANARO

Components	Added mass (kg)
Round flow tube	1.396
Hexagonal flow tube	2.487
18-element fuel assembly	1.671
36-element fuel assembly	2.76

2.3.

3	2-D	top guide	spring
top guide spring		,	2-D beam

shell , top guide spring 3-D , 3 , 7 ;

3.

.

ANSYS[7] 18 36 . 7, ,

3.1 18

18 ANSYS Block Lanczos .

(bending mode) 16.1Hz . 4 . x-y x-y . 4 18

[8] [2] . 4 1 フト , 18 .18 .18 .11

26.4Hz , 16.1Hz

.

,

_	
	Natural frequency (Hz)
Modal analysis(in-water)	$16.1(1^{\text{st}}), 16.4(2^{\text{nd}}), 29.0(3^{\text{th}}), 30.8(4^{\text{th}}), 63.0(5^{\text{th}}), 63.1(6^{\text{th}})$
Experiment(in-water)[8]	16.0, 26.5
Modal analysis(in-air)[2]	$26.4(1^{st}), 29.9(2^{nd}), 96.9(5^{th}), 98.7(6^{th})$

 Table 4
 Natural frequencies of the in-water 18-element fuel assembly

Fig. 4 Natural frequencies and mode shapes for the in-water 18-element fuel assembly

가 가 . 16.5Hz 16.9Hz (a) 1st mode (b) 2nd mode 35.5Hz 35.6Hz (c) 3rd mode (d) 4th mode 63.3Hz 64.4Hz

가

가

가

(e) 5th mode

(f) 6th mode

Fig. 5 Natural frequencies and mode shapes in-water 36-element fuel assembly

 Table 5
 Natural frequencies of the in-water 36-element fuel assembly

	Natural frequency(Hz)		
Modal analysis(in-water)	$16.5(1^{\text{st}}), 16.9(2^{\text{nd}}), 35.5(3^{\text{rd}}), 35.6(4^{\text{th}}), 63.3(5^{\text{th}}), 64.4(6^{\text{th}})$		
Experiment(in-water)[8]	16.5, 28.0		
Modal analysis(in-air)[2]	$27.7(1^{\text{st}}), 29.5(2^{\text{nd}}), 98.4(5^{\text{th}}), 103.5(6^{\text{th}})$		

•

,

.

4.

,

•

•

,

1)		18	36
	가 16.1Hz	16.5Hz	

2)

3)

[1]		,	,	,	,	, "KMR	R
			," KAE	RI/ RR-14	17/94,		, 1994.
[2]		,	,	,	,	"	
	,"			2001			, 2001.

•

- [3] S.S. Chen and H. Chung, "Design Guide for Calculating Hydrodynamic Mass; Part I: Circular Cylindrical Structures," ANL-CT-76-45, Argonne National Laboratory, Argonne, IL, 1976.
- [4] H. Chung and S.S. Chen, "Design Guide for Calculating Hydrodynamic Mass; Part II: Non-Circular Cylindrical Structures," ANL-CT-78-49, Argonne National Laboratory, Argonne, IL, 1978.
- , " 가," [5] , , , KAERI/TR-1584/2000, , 2000.6 , , , "Assessment for Hydrodynamic Masses [6] , of HANARO Flow Tubes," 2000 , 2000. [7] ANSYS 5.5 User's Manual.
- [8] , , , " ,," KAERI/RR-1810/97