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Abstract 

A constructive method for determining the Shape Annealing Matrix (SAM) of KSNP is developed with the 

constrained quadratic programming method with Tikhonov regularization parameter. The current method of 

SAM determination is using the ordinary least squares method which sometimes gives not physically 

meaningful and very noise sensitive solutions. Those phenomena come from the poor persistently exciting 

perturbations in power distribution changes during the start up of the reactor. To circumvent the difficulties, 

a constrained optimization algorithm is introduced. The method is based on the Tikhonov regularization to 

reduce the noise sensitivity and the constrained quadratic programming approach to bound the solution 

within the physical domain. The test results with the real measurement data from KSNPs show remarkable 

improvement in accuracy and robustness along the cycle burnup. 

1. INTRODUCTION  

In KSNPs, SAM is used as parameters of reconstructing the 3-level in-core power distribution in the core 

protection system. The SAM is based on an assumption that the ex-core detector signals and the peripheral 

core powers have linear relations. Thus the each SAM elements of the top, middle, and bottom ex-core 

detectors are determined by the linear least squares method with the data measured during the Fast Power 

Ascension (FPA) test at 20%~80% power or with Xenon oscillation data. The FPA test measurement is a 

normal process determining the SAM values for reload core. However, the signals measured from FPA test 

are not persistently exciting since the reactivity perturbations are stepwise increasing inducing small ASI 

variations. That means the inversion matrix for computing SAM is apt to be singular and ill-posed. This 

makes the SAM determined very sensitive to the measurement noise and sometimes gives non-physical 

solutions for SAM.  

The non-physical solutions determined at BOC normally invoke very large axial power RMS error 

exceeding 8% after MOC. This is natural since the measured SAM at BOC is not able to cover the whole 

cycle it is not optimal for the entire cycle of operation. Also the proper values of SAM should be installed 
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before the increase of the core power up to 80% during FPA test. The power increase sometimes limited 

due to the difficulty in determining SAM that could give rise to the decrease in plant capacity factor.  

In this paper, a constructive method is proposed to resolve the problem by introducing a regularization 

parameter to reduce the effect of the measurement noise and the physical constraints to bound the solution 

within the meaningful region. The problem is reconstructed with the damped quadratic programming 

approach with a regularization parameter. The validity of the proposed method is demonstrated by applying 

to the real measurement data from KSNPs.  

2. REGULARIZATION METHOD FOR LINEAR LEAST SQUARES PROBLEM 

A. ILL-POSED LEAST SQUARES PROBLEMS 

To demonstrate the ill-posedness of the least square problems induced by measurement noise, consider the 

following example least squares problem1) of finding the over-determined solution �    

2||||min bAx
x

−                                                                            (1) 

with coefficient matrix A and right-hand side b given by  
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The condition number of this least squares problem is 1.1x103 which implies that the least squares solution 

is potentially very sensitive to the noise of the data. The condition number of a matrix is always greater or 

equal to 1. If it is close to one, the matrix is well conditioned which means its inverse can be computed with 

good accuracy. If the condition number is large, then the matrix is said to be ill-conditioned. Practically, 

such a matrix is almost singular, and the computation of its inverse, or solution of a linear system of 

equations is prone to large numerical errors. A matrix that is not invertible has the condition number equal 

to infinity. The ordinary least-squares solution of this problem is 8.40).-   (7.01  x LS
T =  This solution is 

obviously worthless, and something must be done in order to compute a better approximation to the exact 

solution. 
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Hansen1) identified the difficulties associates with discrete ill-posed problems.  

1. the condition number of the matrix A is large  

2. replacing A by a well-conditioned matrix derived from A does not necessarily lead to a useful 
solution  

3. care must taken when imposing additional constraints. 

B. DISCRETE ILL-POSED PROBLEMS OF EX-CORE DETECTOR RESPONSE 

The Fredholm integral equation of the first kind with a square integrable kernel is the classical example of 

an ill-posed problem1,2) ,  

∫ =
�

�

g(s) dt  f(t)  t)K(s,                                                                  (2) 

where the right-hand side g and the kernel K are given, and where f is the unknown solution. If the solution 

f is perturbed by  

constant       2,..., 1,  p      pt),sin(2  f(t) ===∆ επε  

then the corresponding perturbation of the right-hand side g is given by  

∫ ==∆
b

a
sg 2,... 1,  p   dt, pt)sin(2  t)K(s,)( πε  

and due to the Riemann-Lebesgue lemma it follows that 0→∆g as ∞→p .  

Hence, the ratio ||||/|||| gf ∆∆  can become arbitrary large by choosing the integer p large enough, thus showing 

that (2) is an ill-posed problem. In particular, this example illustrates that Fredholm integral equations of 

the first kind with square integrable kernels are extremely sensitive to high-frequency perturbations.  

The ex-core detector response D for a reactor power distribution P(r) can be considered as a similar integral 

equation by 

DdrrrP
V

=∫ )()( ω ,                                                                 (3) 

where )(rω  is the spatial weighting function and V denotes the core volume. For a 3-segment excore 

detectors, the normalized axial spatial weighting function can be written in the form : 
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where kd ,ω  is axial spatial weight of d-th detector segment and Vk is volume of the k-th core axial segment. 

Note that ),,(* Erid ΩΦ  is adjoint flux subject to adjoint source at d-th detector segment. Figure 1 shows the 

axial spatial weights kd ,ω for 3-level detector signals. 

 
Figure 1.   Axial spatial weights of 3-level detector signals 

 
The linear relations between top, middle, and bottom ex-core detector responses and the 3-level core 

peripheral powers can be represented by the SAM matrix as follows : 
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where ijS  is the elements of the SAM, iP  is the peripheral power of core level i and iD  is the excore 

detector signal of level  i. The elements of the inverse SAM mean the integrated values of each axial spatial 

weights kd ,ω .  

The determination of the SAM is performed by collecting the measurements (peripheral powers and ex-core 

detector signals) during the FPA test. Then the corresponding least squares problem becomes 
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where i=1,2,3 correspond to the top, middle, bottom detectors, respectively for the snapshots 1,…,N. If we 

set Eq.(6) as bAx = ,  the problem becomes a typical least squares finding the over-determined solution 

.)S  S  (S  x T
i3i2i1LS =  

The SAM represents the extremely simplified inverse (or adjoint) of the axial spatial weights (kernel) of the 

neutron transport from core periphery to ex-core detectors. The determination of the SAM matrix can be a 

typical ill-posed least squares problem corresponding to the classical example of a Fredholm integral 

equation of the first kind with a extremely simplified transport kernel assumed as a linear summation of the 

3-level ex-core detector signals. 

This kind of discrete ill-posed problems have the following criteria1) .  

1. the singular values of A decay gradually to zero  

2. the ratio between the largest and the smallest nonzero singular values is large.  

Criterion 2 implies that the matrix A is ill-conditioned and that the solution is potentially very sensitive to 

perturbations. The criterion 1 implies that there is no nearby problem with a well-conditioned coefficient 

matrix and with well-determined numerical rank. An important aspect of discrete ill-posed problems is that 

the ill-conditioning of the problem does not mean that a meaningful approximate solution cannot be 

computed. Rather, the ill-conditioning implies that standard methods in numerical linear algebra cannot be 

used in a straightforward manner to compute such a solution. Instead, more sophisticated methods must be 

applied in order to ensure the computation of a meaningful solution. It is the primary goal of this paper to 

find out a constructive and stable method solving the discrete ill-posed problem of SAM determination. 

C. REGULARIZATION METHOD1,2,3) 

C. 1 PSEUDO INVERSE SOLUTION 

The pseudo inverse solution of the least squares problem (1) becomes 

bAA)(A T-1T=LSx .                                                                   (7) 

By using the SVD (singular value decomposition), this can be written as  

b1 T
pppLS UVx −Σ= .                                                                    (8) 

where p is the number of nonzero singular values, Up consists of the first p columns of U, Vp consists of 

the first p columns of V, and 1−Σ p  is a diagonal matrix whose entries are the reciprocals of the nonzero 

singular values of A. 
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The elements of the vector bT
pU are simply the dot products of the first p columns of U with b. This vector 

can be written as 

[ ]TT
p

TTT
p UUUU b    b   bb 21 ⋅⋅⋅= .                                                          (9) 

Multiplying 1−Σ p  times this vector, we obtain 

TT
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.                                                  (10) 

Finally, when we multiply Vp times this vector, we obtain a linear combination of the columns of Vp that 

can be written as 

∑
=

=
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.                                                                   (11) 

This formula for the least squares solution is helpful because it shows us why small singular values can 

have a huge effect on the least squares solution in the presence of noise. In the presence of random noise, 

bT
iU is very likely to be nonzero, even if the true data were orthogonal to iU . When we divide this nonzero 

value by a very small singular value iσ , we get a very large number, which is then multiplied by the 

singular vector iV . In this way, the least squares solution incorporates large components in the direction iV . 

We say that the discrete Picard condition is satisfied when the values of bT
iU decay to zero faster than the 

singular values iσ . This is an indication that pseudo-inverse solution will not be highly sensitive to noise. If 

the Picard condition is not satisfied, then our solution is likely to be extremely sensitive to noise in the data. 

C. 2 Tikhonov Regularization 
Normally, the solution with small norm shows low sensitivity to the measurement noise. This fact implies 

that we can get more meaningful solution if we bound the norm of the least squares solution. There are 

many ways to bound the solution through constrained minimization, i.e., δ≤− ||||..   ||,|| ��������� or 

ε≤− ||||..   ||,|| ��������� . The most common and well-known form of regularization method is Tikhonov 

regularization with the following form of damped least squares problem 

}||x||||b -Ax||min{ 2
2

22
2 λ+ .                                                                (12) 

The damped least squares problem (12) is equivalent to the ordinary least squares problem 
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The solution to this least squares problem can be obtained by solving the normal equations 
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This system of equations simplifies to 

bAxIAA TT =+ )( 2λ .                                                                  (15) 

In terms of the SVD, this can be written as 

 bUVxIVV TTTT Σ=+ΣΣ )( 2λ .                                                            (16) 

Since this system of equations is nonsingular (a is nonzero), it has a unique solution given by 

i
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= .                                                                 (17) 

The factors  

22

2

λσ
σ
+

=
i

i
if                                                                        (18) 

are called filter factors. For . λσ >>i , the filter factor if  is approximately one. For λσ <<i , the filter factor 

if  is approximately zero. In between, the filter factors serve to reduce the contribution of the small singular 

values to the solution. Clearly, a large λ (equivalent to a large amount of regularization) favors a small 

solution semi-norm at the cost of a large residual norm, while a small λ (i.e., a small amount of 

regularization) has the opposite effect. The underlying idea is that a regularized solution with small 

(semi)norm and a suitably small residual norm is not too far from the desired, unknown solution to the 

unperturbed problem underlying the given problem. 

D. CONSTRAINED REGULARIZATION METHOD 

In real applications the behavior of the solution is sometimes known beforehand. When the behavior of the 

solution is known beforehand it can be a great advantage to be able to incorporate this information in order 

to reconstruct the solution. The use of the proper side constraints helps to reconstruct the solution.  The 

linear inequality constraints are imposed as follows 

dGx s.t.   },||x||||b -Ax||min{ 2
2

22
2 ≥+λ .                                                 (19) 

For non-negative x, we can choose 0, == dIG . 

Since Eq. (19) is equivalent to the damped least squares problem (13), (19) can be transformed into 

dGx s.t.   },||b -Ax||min{ 2
2 ≥                                                          (20) 
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We can further define AAH T=  and bAg T−= , then the following problem becomes equivalent to (20) 

dGx s.t.   x,gHxx
2
1)(min TT ≥+=xq                                                   (21) 

This is the well-known constrained quadratic programming (QP) solution and can be easily solved by the 

active set method. 

3. APPLICATION OF CONSTRAINED REGULARIZATION METHOD TO DETERMINE SHAPE ANNEALING MATRIX 

The inverse of the SAM matrix has the well-established physical meaning of inequalities in magnitudes 

explaining the location dependent detector sensitivities as follows  
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where ijT  is the elements of the inverse SAM has to be positive in any conditions since the detector 

sensitivities have definite positive contributions. 

In this context, we can set up the constraints for the SAM matrix. Firstly, the analytic expression of the 

inverse of the (3x3) matrix can be written by 
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where the matrix determinant is given by 

)(det 211233113223312213322113312312332211 SSSSSSSSSSSSSSSSSS ++−++= . 

For the one of the upper diagonal element of SAM 3312321312 TTTTS −= . Since 3212 ~ TT and 3313 TT << , 12S  

should be negative. Similarly, the elements of the SAM matrix 322321 S ,S ,S  should be negative too. Since the 

behavior of the solution of SAM is known beforehand it can be a great advantage to be able to incorporate 

this information in order to reconstruct the solution.  

For the calculation of the SAM matrix, the constrain matrix G for top, middle, and bottom detectors become 

as follows: 
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The simulation result showd the regularization factor id not sensitive to the result in the range of  
23 100.1~100.1 −− ××  so the fixed value of 2100.1 −×=λ  was used. 

The developed algorithm is tested with three FPA test cases in KSNPs. Table 1 shows the condition 

numbers of the detector measurement matrix in Eq.(6) which show very large numbers that means the least 

squares solutions of those problems are extremely sensitive to measurement noise. 

Table 1.  Condition numbers of the Detector Measurement Matrix in Eq.(6) 

        Channels 
Cases A B C D 

Case 1 
Case 2 
Case 3 

2.6343×103 

2.8714×103 
2.4409×103 

1.4167×103 
3.0349×103 
3.0349×103 

2.4008×103 
2.4409×103 
2.4409×103 

1.6486e×103 
2.3385×103 
2.3385×103 

Tables 2-1 ~ 4-2 are the calculated values of SAM, Inverse SAM and test value for three sample cases. The 

test value means the norms of the calculated SAM values with the optimal value of 4.0. The SAM matrix 

with the test value within the range of 3.0~6.0 can be installed to prevent the excessive noise sensitivity. 

The most physically meaningful SAM can be considered as the one with test value 4.0 and the inequality 

(22) is satisfied. The test value of 5.0289 (channel B of case 1) in table 2-1 is improved to 4.2119 in table 2-

2 by applying new method. Tables 3 and 4 are the noise contaminated cases and the SAM calculation 

results are greatly improved. The inverse SAMs have many negative(-) elements with the current method 

but the new method gives the positiveness of inverse SAM elements satisfying inequality and test values 

very close to 4.0. 

Table 2-1.  SAM, Inverse SAM and Test Value for Case 1 (Current Method) 

===========================================================================  
        Channel           SAM                   Inverse SAM          Test Value 

===========================================================================  
    A        4.5397 -0.2905 -1.5600    0.2383  0.0269  0.0785     3.8990 

                  -0.7580  3.6646 -0.2673    0.0524  0.2803  0.0325 
                  -0.7817 -0.3740  4.8272    0.0426  0.0261  0.2224 
      -------------------------------------------------------------------------- 
        B        5.2913 -2.3617  0.6197    0.1960  0.1305 -0.0041     5.0289 
                -0.3447  3.6017 -0.8293    0.0410  0.2738  0.0628 
                -1.9466  1.7600  3.2096    0.0964 -0.0710  0.2746 

      -------------------------------------------------------------------------- 
        C        4.3385 -0.4846 -0.9101    0.2436  0.0370  0.0529     3.9674 
                -0.8709  4.1603 -0.9288    0.0581  0.2569  0.0602 
                -0.4677 -0.6757  4.8389    0.0317  0.0394  0.2202 

      -------------------------------------------------------------------------- 
        D        4.6510 -0.9608 -0.6811    0.2318  0.0583  0.0445     4.0832 
                -0.3466  3.3753 -0.4288    0.0326  0.2992  0.0366 
                -1.3044  0.5855  4.1098    0.0689 -0.0241  0.2522 

      -------------------------------------------------------------------------- 
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Table 2-2.  SAM, Inverse SAM and Test Value for Case 1 (New Method) 

===========================================================================  
        Channel           SAM                   Inverse SAM          Test Value 

===========================================================================  
        A        4.5149 -0.2516 -1.5846    0.2398  0.0240  0.0803     3.8736 
                -0.7093  3.5880 -0.2188    0.0501  0.2849  0.0296 
                -0.8148 -0.3220  4.7942    0.0441  0.0232  0.2242 

     -------------------------------------------------------------------------- 
        B        5.2773 -2.3350  0.5975    0.1971  0.1285 -0.0029     4.2119 
                -0.3336  3.5805 -0.8116    0.0282  0.2977  0.0480 
                -1.0311  0.0000  4.6793    0.0434  0.0283  0.2131 

     -------------------------------------------------------------------------- 
        C        4.3021 -0.4239 -0.9525    0.2453  0.0337  0.0549     3.9303 
                -0.7917  4.0285 -0.8366    0.0552  0.2623  0.0570 
                -0.5238 -0.5822  4.7734    0.0337  0.0357  0.2225 

     -------------------------------------------------------------------------- 
        D        4.6405 -0.9422 -0.6951    0.2287  0.0643  0.0407     3.8057 
                -0.3333  3.3517 -0.4110    0.0287  0.3064  0.0321 
                -0.9733  0.0000  4.5515    0.0489  0.0137  0.2284 

     -------------------------------------------------------------------------- 

 

Table 3-1.  SAM, Inverse SAM and Test Value for Case 2 (Current Method) 

===========================================================================  
        Channel           SAM                   Inverse SAM          Test Value 

===========================================================================  
    A        5.2241 -1.4507 -0.7759    0.2110  0.0810  0.0449     4.6658 

                  -0.0713  2.9462 -0.1558    0.0110  0.3369  0.0155 
      -2.1529  1.5046  3.9317    0.1113 -0.0846  0.2730 

      -------------------------------------------------------------------------- 
          B        0.9993  5.1356 -4.9302   -0.8392  2.0111 -1.1236    18.9414 
                   1.3037  0.6094  1.5227    0.7570 -1.0214  0.8252 
                   0.6970 -2.7449  6.4075    0.4156 -0.6563  0.6318 
      -------------------------------------------------------------------------- 
          C        2.4951  2.8674 -3.5096   -0.7540  1.8716 -1.0368     9.1595 
                   1.1706  0.7907  1.4107    1.0502 -1.5788  1.1597 
                  -0.6659 -0.6579  5.0987    0.0370  0.0407  0.2104 
      -------------------------------------------------------------------------- 
          D        1.2107  4.9768 -5.0204   -0.2055  0.8390 -0.4045    45.3182 
                   1.5863  0.1794  1.7793    0.3955 -0.3555  0.4195 
                   0.2030 -2.1562  6.2411    0.1433 -0.1501  0.3183 
      -------------------------------------------------------------------------- 
 

Table 3-2.  SAM, Inverse SAM and Test Value for Case 2 (New Method) 

===========================================================================  
        Channel           SAM                   Inverse SAM          Test Value 

===========================================================================  
         A        5.1873 -1.3873 -0.8221    0.2023  0.0969  0.0354     3.9210 
                 -0.0421  2.8960 -0.1192    0.0051  0.3477  0.0091 
                 -1.2792  0.0000  5.0290    0.0515  0.0246  0.2078 

      -------------------------------------------------------------------------- 
         B        4.3226  0.0000 -1.7054    0.2259  0.0526  0.0609     4.3365 
                 -0.2618  3.0309  0.0000    0.0195  0.3345  0.0053 
                  0.6155 -2.6189  6.3283   -0.0139  0.1333  0.1543 

      ------------------------------------------------------------------------- 
         C        4.3378  0.0000 -1.7013    0.2446  0.0167  0.0820     3.7594 
                 -0.2619  3.0231  0.0000    0.0212  0.3322  0.0071 
                 -0.6922 -0.6169  5.0728    0.0360  0.0427  0.2092 

      -------------------------------------------------------------------------- 
         D        4.4893  0.0000 -1.9642    0.2236  0.0482  0.0708     4.1031 
                 -0.3133  3.0686  0.0000    0.0228  0.3308  0.0072 
                  0.1593 -2.0899  6.2002    0.0019  0.1103  0.1619 

      -------------------------------------------------------------------------- 
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 Table 4-1.  SAM, Inverse SAM and Test Value for Case 3 (Current Method) 

===========================================================================  
        Channel           SAM                   Inverse SAM          Test Value 

===========================================================================  
        A        5.8865 -2.4271  0.0972    0.1877  0.1120  0.0181     4.7872 
                -0.5611  3.8059 -0.7558    0.0472  0.2697  0.0545 
                -2.3254  1.6212  3.6586    0.0984 -0.0483  0.2607 
    --------------------------------------------------------------------------- 
        B        2.4521  2.5744 -3.2089   -0.1247  0.6109 -0.2907    10.4823 
                 1.6250  0.4934  1.5580    0.4799 -0.4130  0.4695 
                -1.0772 -0.0678  4.6509   -0.0219  0.1355  0.1545 
    --------------------------------------------------------------------------- 
        C        3.3198  1.3147 -2.3667    0.3498 -0.1495  0.1811     4.6928 
                 0.3123  2.3141  0.4363   -0.0544  0.4452 -0.0655 
                -0.6322 -0.6286  4.9303    0.0379  0.0376  0.2177 
    --------------------------------------------------------------------------- 
        D        2.5073  2.7235 -3.5205    3.4273 -5.1441  3.3011     7.5505 
                 1.0917  1.2133  1.1201   -2.9606  5.1541 -2.9989 
                -0.5990 -0.9369  5.4005   -0.1335  0.3237  0.0310 

      -------------------------------------------------------------------------- 
 

Table 4-2.  SAM, Inverse SAM and Test Value for Case 3 (New Method) 

===========================================================================  
        Channel           SAM                   Inverse SAM          Test Value 

===========================================================================  
        A        5.8350 -2.3474  0.0409    0.1852  0.1160  0.0157      4.0922  
                -0.5232  3.7473 -0.7144    0.0353  0.2889  0.0427 
                -1.2771  0.0000  4.8033    0.0492  0.0308  0.2124 
     -------------------------------------------------------------------------- 
        B        4.3120  0.0000 -1.6480    0.2552  0.0009  0.0909      3.6747  
                -0.2266  3.0590  0.0000    0.0189  0.3270  0.0067 
                -1.1041 -0.0305  4.6283    0.0610  0.0024  0.2378 
     -------------------------------------------------------------------------- 
        C        4.2421  0.0000 -1.5335    0.2487  0.0148  0.0780      3.7019  
                -0.1696  3.0017  0.0000    0.0141  0.3340  0.0044 
                -0.6743 -0.5687  4.8923    0.0359  0.0409  0.2157 
     -------------------------------------------------------------------------- 
        D        4.4625  0.0000 -1.8736    0.2372  0.0239  0.0828      3.8326  
                -0.2336  3.0619  0.0000    0.0181  0.3284  0.0063 
                -0.6380 -0.8825  5.3676    0.0312  0.0568  0.1972 

       -------------------------------------------------------------------------- 
 

Figures 2 and 3 show the RMS errors of cases 1 and 2 reconstructed with the calculated SAM (e=Ax-b) 

summed for 3-level detectors. Although the calculated SAMs are quite different, the RMS errors show very 

close trend This means that the SAMs are decided in another optimal sense with constrained optimization 

technique. 

Figures 4 and 5 show the RMS errors of cases 1 and 3 by core follow calculations from BOC to EOC. The 

decrease in RMS error of channel B in Fig.4 is due to the improvement in SAM value by the new method. 

The increase in accuracy of the RMS errors for each channel is remarkable for case 3 (Fig. 5) since the 

SAM calculated with conventional ordinary least squares method has unphysical values for case 3.  
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Figure 2.  RMS Errors of each Channel for Case 1 FPA (Current & New Methods) 

 

 

 

 

 

 

 

 

 

 

Figure 3.  RMS Errors of each Channel for Case 2 FPA (Current & New Methods) 
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Figure 4.  RMS Errors of each Channel for Case 1 Follow (Current & New Methods) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.  RMS Errors of each Channel for Case 3 Follow (Current & New Methods) 
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4. CONCLUSION 

The least squares method for parameter identification of linear models has definite applications in nuclear 

science, for example, modeling the responses of the spatially distributed detectors, nuclear data treatment, 

response surface modeling of the thermal margin estimation etc. Considering the inevitable measurement 

noise, the ill-posedness of the least squares method can arise and limit the applicability of the assumed 

model structures. In this paper, a constructive method is proposed with the constrained quadratic 

programming approach with Tikhonov regularization parameter. The test results applied to determine the 

Shape Annealing Matrix of KSNP show the remarkable improvement in accuracy and robustness under the 

poor persistently exciting perturbations conditions. The developed method can be applied with minimal 

changes in computer codes for core protection system design. Since the method always gives physically 

meaningful and robust solution, the reload start-up process can be facilitated. The developed method can be 

applied to various reconstruction problems, parameter identification in dynamic system modeling, 

functional neural network training, and computer-assisted tomography etc3). 
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