2002

NEM/ANM

A Performance Test of non-linear NEM/ANM CMFD in LWR core transient.

ABSTRACT

Many sophisticated methodologies to solve the 2-group neutron diffusion equation were developed for last 25 years. In this paper, Nodal Expansion Method (NEM) and Analytic Nodal Method (ANM) were coupled in nonlinear coarse mesh finite difference method to get more accurate core power distribution. NEM and ANM were used for core nodes and reflector nodes, respectively. ANM is applied to the reflector area because it can give more precise solution than NEM and there is no fission source in a reflector. It means this combination does not have any limitation to solve a multi-group diffusion equation. The new approach has been adopted in the threedimensional core transient analysis code, RAST-K, which was developed to simulate the reactor physics test and successfully applied to obtain the dynamic rod worth from the measured excore detector signals. The results of 11 benchmark cases show that the new approach is more accurate than a traditional non-linear NEM only.

١.

25

2

%

Nodal Expansion Method (NEM)[1]Analytic Nodal Method (ANM)[2], AnalyticFunction Expansion Method (AFEN)[3], Nodal Green's Function Method (NGFM)[4], Green's FunctionNodal Expansion Method (GNEM)[5], Spectral Galerkin Coarse-mesh (SGCM)[6],ANM[7]Unified nodal method (UNM)[8]

ANC[9], ROCS[10],

SIMULATE[11]

가

II.

가. NEM/ANM

(net current)	가 가	. One node , NEM	two node ANM
NEM ANM	1		
$\frac{1}{v_g} \frac{\partial \phi_g(u,t)}{\partial t} - D_g \nabla^2 \phi_g(u) + \Sigma$	$t_g \phi_g(u) = -L_g(u) ; g = 1$	$y_{2}, u = x, y, z,$	(1)
$\vec{\phi}^{C}(u) = \vec{C}_{0}^{C} + \vec{C}_{1}^{C}h_{1}(u) + \vec{C}_{2}^{C}h_{2}(u) + \vec{C}_{2}^{C}h_$	$+\vec{C}_{3}^{C}h_{3}(u)+\vec{C}_{4}^{C}h_{4}(u),$ sinh $\kappa^{R}u' = 0$	$\begin{bmatrix} A_1^R \\ B^R \end{bmatrix}$	(2)

$$\vec{\Phi}^{R}(u) = \begin{bmatrix} \cosh \kappa_{1}^{R} u' & \sinh \kappa_{1}^{R} u' & 0 & 0 \\ R_{21} \cosh \kappa_{1}^{R} u' & R_{21} \sinh \kappa_{1}^{R} u' & \cosh \kappa_{2}^{R} u' & \sinh \kappa_{2}^{R} u' \end{bmatrix} \begin{bmatrix} B_{1}^{R} \\ A_{2}^{R} \\ B_{2}^{R} \end{bmatrix}$$
(3)
+ $\vec{f}_{0}^{R} + \vec{f}_{1}^{R} h_{1}(u) + \vec{f}_{2}^{R} h_{2}(u),$

$$f_{0g}^{R} = \frac{-\left(L_{0g}^{R} - \frac{12}{a_{u}^{R}}\beta_{g}^{R}f_{2g}^{R}\right)}{\Sigma_{tg}^{eff}}, f_{1g}^{R} = -\frac{L_{1g}^{R}}{\Sigma_{tg}^{eff}}, f_{2g}^{R} = -\frac{L_{2g}^{R}}{\Sigma_{tg}^{eff}}, R_{21} = \frac{\Sigma_{21}^{R}/D_{2}^{R}}{\kappa_{2}^{R^{2}} - \kappa_{1}^{R^{2}}}, \kappa_{g} = \sqrt{\frac{\Sigma_{tg}^{eff}}{D_{g}^{R}}}, \Sigma_{tg}^{eff} = \Sigma_{tg}^{R} + \frac{\omega_{g}^{R}}{v_{g}}, \frac{1}{v_{g}}\frac{\partial\phi_{g}(u,t)}{\partial t} \approx \frac{\omega_{g}}{v_{g}}\phi_{g}(u,t_{1}), \omega_{g}^{R} = \frac{1}{\Delta t}\ln\left(\frac{\overline{\phi}_{g}^{R}(t_{n+1})}{\overline{\phi}_{g}^{R}(t_{n})}\right), \lambda_{g}^{R}$$

, C, R Core node, Reflector node ,

$$\begin{bmatrix} C_{11}^{C} \\ C_{12}^{C} \end{bmatrix} + \begin{bmatrix} SH_{1} & 0 \\ R_{21}SH_{1} & SH_{2} \end{bmatrix} \begin{bmatrix} B_{1}^{R} \\ B_{2}^{R} \end{bmatrix} = \underline{\mathbf{FC}},$$
(4)

-

$$2\mathbf{\underline{X}}_{=11}^{c}\mathbf{C}_{1}^{c} + \mathbf{\underline{D}}_{1}^{R} \begin{bmatrix} \mathbf{\kappa}_{1}^{R}CH_{1} & \mathbf{0} \\ R_{21}\mathbf{\kappa}_{1}^{R}CH_{1} & \mathbf{\kappa}_{2}^{R}CH_{2} \end{bmatrix} \begin{bmatrix} B_{1}^{R} \\ B_{2}^{R} \end{bmatrix} = \mathbf{\underline{FJ}}.$$
(5)

$$\begin{split} \underline{\mathbf{FC}} &= \begin{bmatrix} CH_{1} & 0 \\ R_{21}CH_{1} & CH_{2} \end{bmatrix} \begin{bmatrix} A_{1}^{R} \\ A_{2}^{R} \end{bmatrix} + \vec{f}_{0}^{R} - \vec{f}_{1}^{R} - \vec{f}_{2}^{R} - \begin{bmatrix} \overline{\phi}_{1}^{c} \\ \overline{\phi}_{2}^{c} \end{bmatrix} + \begin{bmatrix} C_{21} \\ C_{22}^{c} \end{bmatrix}, \\ \underline{\mathbf{FJ}} &= 6 \mathbf{\underline{b}}^{c} (\underline{\mathbf{W}}_{13}^{c} \mathbf{S}_{1}^{c} + \mathbf{S}_{0}^{c}) + \underline{\mathbf{D}}^{R} \begin{bmatrix} \kappa_{1}^{R}SH_{1} & 0 \\ R_{21}\kappa_{1}^{R}SH_{1} & \kappa_{2}^{R}SH_{2} \end{bmatrix} \begin{bmatrix} A_{1}^{R} \\ A_{2}^{R} \end{bmatrix} + 2 \mathbf{\underline{b}}^{R} (\vec{f}_{1}^{R} + 3\vec{f}_{2}^{R}), \\ \underline{\mathbf{X}}_{11}^{c} &= \underline{\beta} (1 + 3 \underline{\mathbf{W}}_{13}^{C} \underline{\mathbf{M}}_{11}^{C}), \\ \underline{\mathbf{W}}_{13}^{C} &= \underline{\mathbf{M}}_{13}^{C^{-1}}, \\ SH_{i} &= \sinh \left[\frac{a\kappa_{i}^{R}}{2} \right], \\ CH_{i} &= \cosh \left[\frac{a\kappa_{i}^{R}}{2} \right], \\ \underline{\mathbf{M}}_{13}^{C} &= \begin{bmatrix} 60 \frac{\beta_{1}^{C}}{a} + \Sigma_{t1}^{eff,C} - \frac{\mathbf{v}\Sigma_{t1}^{eff,C}}{k_{eff}} & -\frac{\mathbf{v}\Sigma_{t1}^{eff,C}}{k_{eff}} \\ -\Sigma_{21}^{C} & 60 \frac{\beta_{2}^{C}}{a} + \Sigma_{t2}^{eff,C} \end{bmatrix}. \end{split}$$

(3) (4)
$$\boldsymbol{B}^{R}$$
$$\boldsymbol{J}^{R}_{Surface} = -\underline{\underline{D}}^{R} \begin{bmatrix} -\kappa_{1}^{R}SH_{1} & 0\\ -R_{21}\kappa_{1}^{R}SH_{1} & -\kappa_{2}^{R}SH_{2} \end{bmatrix} \begin{bmatrix} A_{1}^{R}\\ A_{2}^{R} \end{bmatrix} - \underline{\underline{D}}^{R} \begin{bmatrix} \kappa_{1}^{R}CH_{1} & 0\\ R_{21}\kappa_{1}^{R}CH_{1} & \kappa_{2}^{R}CH_{2} \end{bmatrix} \begin{bmatrix} B_{1}^{R}\\ B_{2}^{R} \end{bmatrix} + 2\mathbf{b}^{R} (\vec{f}_{1}^{R} + 3\vec{f}_{2}^{R})$$
(5)

$$\widetilde{D}_{gu}^{CR} = \frac{-J_{gur}^{C} a_{u}^{C} - \hat{D}_{gu}^{CR} \left(\overline{\phi}_{g}^{R} - \overline{\phi}_{g}^{C}\right)}{\overline{\phi}_{g}^{R} + \overline{\phi}_{g}^{C}}.$$
(6)

. RAST-K

HZP, full core C1 case

3 MSLB Phase II 57 1 return to power . MSLB Phase II 2-Loop loop steam generator main steam line 가 가 . MTC 가, 6.65 가 가가 1 10% Power defect (return to power) . . RAST-K 가 3 4. 19 NEM/ANM, NEM/NEM . NEM/NEM 가 . (3) 0.4% . 4 .

NEM/NEM, NEM/ANM .

III

NEM ANM
. 1 node/assembly NEM/ANM
. 4 node/assembly 7[†]
7[†]
. 4 NEM/ANM
. 4 NEM/ANM
NEM/NEM
. 4 NEM/NEM

.

1. LRA-BWR 2D/3D

		2D								
	ShoberIQSBOXM1M2[17][17]		M2	IQSBOX	QSBOX M1					
k _{eff}	0.99636	0.99631	0.996224	0.99637	0.99632	0.99623	0.99638			
First peak time (sec)	1.436	1.445	1.450	1.445	0.902	0.899	0.900			
First peak power density(W/cc)	5411	5451	5665	5681	6085	5957	6031			
First power rebound time(sec)	-	-	-	-	-	0.987	0.992			
First rebound power(W/cc)	-	-	-	-	-	112.4	113.1			
Second peak power (W/cc)	784	800	859	875	-	375.0	378.6			
Power density at 3 sec(W/cc)	96.2	100.0	96.8	97.3	-	69.4	70.2			
Nodal peak temp. at 3 sec(K)	1087	1127	1102	1113	3873	3890	3917			
M1 = NEM/NEM, M2 = NEM/ANM										

M1 = 1	NEM/NEM,	M2 =	NEM/AN
$\mathbf{MI} = \mathbf{I}$	NEM/NEM,	M2 =	NEM/AN

0.6118	0.4403	0.4131	0.5119	0.7901	1.3844	1.6599	1.4807	0.9239
-0.006	-0.002	-0.001	-0.001	-0.001	-0.009	-0.010	-0.001	0.002
-0.012	-0.005	-0.004	-0.004	-0.005	-0.015	-0.015	-0.003	0.005
	0.3995	0.4067	0.4904	0.6703	0.9397	1.1506	1.2806	0.8669
	-0.002	-0.002	-0.001	-0.002	-0.001	0.000	0.000	0.001
	-0.005	-0.004	-0.004	-0.005	-0.004	-0.003	-0.001	0.004
		0.4240	0.4920	0.6181	0.7826	0.9667	1.1726	0.8266
	-0.001 -0.002				0.000	0.001	0.002	0.002
		-0.004	-0.004	-0.004	-0.002	-0.001	0.001	0.005
	0.5524				0.8434	1.0224	1.2211	0.8528
			-0.001	-0.001	0.001	0.002	0.002	
			-0.003	-0.003	-0.001	0.001	0.003	0.007
				0.8643	1.1521	1.3394	1.4215	0.9324
				-0.001	0.002	0.003	0.002	0.003
				-0.002	0.001	0.003	0.004	0.008
			Shober		1.8515	2.0505	1.6796	0.9719
	Sho	ber-NE	M/ANM		-0.006	-0.005	0.004	0.006
	Sho	ober-NE	M/NEM		-0.006	-0.003	0.008	0.012
		RM	IS Error			2.1607	1.6216	0.8484
			0.4%			-0.002	0.009	0.007
			0.7%			0.002	0.015	0.016
							1.3319	
							0.009	
							0.023	

1. LRA-BWR 2D

2. LRABWR 3-D

0.97244 1.4903 1.0513 1.7847 1.8002 0.99619 0.3975 0.55189 0.98181 1.5041 1.0603 1.7977 1.8117 1.0009 0.39825 0.55103 0.95 0.92 0.85 0.72 0.63 0.47 0.19 -0.16 0.95 0.92 0.85 0.72 0.63 0.47 0.19 -0.16 1.812 1.6316 1.8897 1.4098 0.55748 0.56734 0.43935 1.8282 1.6447 1.9026 1.4177 0.5591 0.56628 0.43413 0.89 0.80 0.68 0.56 0.29 -0.19 -1.20 1.8282 1.6447 1.9026 0.72791 0.73469 0.39306 -1.20 1.0075 1.4376 0.72887 0.73133 0.38867 -1.20 1.0075 1.4376 0.7287 0.98429 0.56616 NEM/NEM-A 1.4326 1.0202 0.96967 0.55028 (1 - A/B)*100 0.06 -0.54 -1.51 -2.89 KMS error : 0.01								
0.98181 1.5041 1.0603 1.7977 1.8117 1.0009 0.39825 0.55103 0.95 0.92 0.85 0.72 0.63 0.47 0.19 -0.16 1.812 1.6316 1.8897 1.4098 0.55748 0.56734 0.43935 1.8282 1.6447 1.9026 1.4177 0.5591 0.56628 0.43413 0.89 0.80 0.68 0.56 0.29 -0.19 -1.20 1.007 1.431 0.72791 0.73469 0.39306 -1.20 1.0075 1.4376 0.72887 0.73133 0.38867 -1.20 0.67 0.46 0.13 -0.46 -1.13 NEM/NEM-A 1.4317 1.0257 0.98429 0.56616 NEM/ANM-B 1.4326 1.0202 0.96967 0.55028 (1- A/B)*100 0.06 -0.54 -1.51 -2.89 RMS error : 0.01 0.55303 0.67845 -1.52 -4.12	0.97244	4 1.4903 1.0513		1.7847	1.8002	0.99619	0.3975	0.55189
0.95 0.92 0.85 0.72 0.63 0.47 0.19 -0.16 1.812 1.6316 1.8897 1.4098 0.55748 0.56734 0.43935 1.8282 1.6447 1.9026 1.4177 0.5591 0.56628 0.43413 0.89 0.80 0.68 0.56 0.29 -0.19 -1.20 1.0007 1.431 0.72791 0.73469 0.39306 1.0075 1.4376 0.72887 0.73133 0.38867 0.67 0.46 0.13 -0.46 -1.13 0.56616 0.5028 0.56616 0.5028 0.56616 0.5028 0.56616 0.55028 0.56141 0.70638 0.55303 0.67845 -2.89 0.56141 0.70638 0.55303 0.67845 -1.52 -4.12 0.412 -4.12 0.55303 0.67845 -1.52 -4.12 0.412 -0.52 -4.12 0.55303 0.67845 -1.52 -4.12 -1.52 -4.12 -1.52 -4.12 -1.52 -4.12	0.98181	1.5041	1.0603	1.7977	1.8117	1.0009	0.39825	0.55103
1.812 1.6316 1.8897 1.4098 0.55748 0.56734 0.43935 1.8282 1.6447 1.9026 1.4177 0.5591 0.56628 0.43413 0.89 0.80 0.68 0.56 0.29 -0.19 -1.20 1.0007 1.431 0.72791 0.73469 0.39306 1.0075 1.4376 0.72887 0.73133 0.38867 0.67 0.46 0.13 -0.46 -1.13 NEM/NEM-A 1.4317 1.0257 0.98429 0.56616 NEM/ANM-B 1.4326 1.0202 0.96967 0.55028 (1- A/B)*100 0.06 -0.54 -1.51 -2.89 RMS error : 0.01 0.55303 0.67845 -1.52 -4.12	0.95	0.92	0.85	0.72	0.63	0.47	0.19	-0.16
1.8282 1.6447 1.9026 1.4177 0.5591 0.56628 0.43413 0.89 0.80 0.68 0.56 0.29 -0.19 -1.20 1.0007 1.431 0.72791 0.73469 0.39306 1.0075 1.4376 0.72887 0.73133 0.38867 0.67 0.46 0.13 -0.46 -1.13 NEM/NEM-A 1.4317 1.0257 0.98429 0.56616 NEM/ANM-B 1.4326 1.0202 0.96967 0.55028 (1- A/B)*100 0.06 -0.54 -1.51 -2.89 RMS error : 0.01 0.55103 0.67845 -1.52 -4.12		1.812	1.6316	1.8897	1.4098	0.55748	0.56734	0.43935
0.89 0.80 0.68 0.56 0.29 -0.19 -1.20 1.0007 1.431 0.72791 0.73469 0.39306 0.39306 0.0075 1.4376 0.72887 0.73133 0.38867 0.67 0.46 0.13 -0.46 -1.13 NEM/NEM-A 1.4317 1.0257 0.98429 0.56616 0.5028 0.56141 0.70638 0.55028 0.56141 0.70638 0.55303 0.67845 -1.52 -4.12 0.56141 0.70638 0.55303 0.67845 -1.52 -4.12		1.8282	1.6447	1.9026	1.4177	0.5591	0.56628	0.43413
1.0007 1.431 0.72791 0.73469 0.39306 1.0075 1.4376 0.72887 0.73133 0.38867 0.67 0.46 0.13 -0.46 -1.13 NEM/NEM-A 1.4317 1.0257 0.98429 0.56616 NEM/ANM-B 1.4326 1.0202 0.96967 0.55028 (1- A/B)*100 0.06 -0.54 -1.51 -2.89 RMS error : 0.01 0.55303 0.67845 -1.52 -4.12		0.89		0.68	0.56	0.29	-0.19	-1.20
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.0007			1.431	0.72791	0.73469	0.39306	
0.67 0.46 0.13 -0.46 -1.13 NEM/NEM-A 1.4317 1.0257 0.98429 0.56616 NEM/ANM-B 1.4326 1.0202 0.96967 0.55028 (1- A/B)*100 0.06 -0.54 -1.51 -2.89 RMS error : 0.01 0.55303 0.67845 -1.52 -4.12	1.00		1.0075	1.4376	0.72887	0.73133	0.38867	
NEM/NEM-A 1.4317 1.0257 0.98429 0.56616 NEM/ANM-B 1.4326 1.0202 0.96967 0.55028 (1- A/B)*100 0.06 -0.54 -1.51 -2.89 RMS error : 0.01 0.55303 0.67845 -1.52 -4.12			0.67	0.46	0.13	-0.46	-1.13	
NEM/ANM-B 1.4326 1.0202 0.96967 0.55028 (1- A/B)*100 0.06 -0.54 -1.51 -2.89 RMS error : 0.01 0.55303 0.67845 -1.52 -4.12	NEM/NEM-A			1.4317	1.0257	0.98429	0.56616	
(1- A/B)*100 0.06 -0.54 -1.51 -2.89 RMS error : 0.01 0.56141 0.70638 -1.52 -4.12		NEM/	ANM-B	1.4326	1.0202	0.96967	0.55028	
RMS error : 0.01 0.56141 0.70638 0.55303 0.67845 -1.52 -4.12		(1- A	/B)*100	0.06	-0.54	-1.51	-2.89	
RMS error : 0.01 0.55303 0.67845 -1.52 -4.12					0.56141	0.70638		
-1.52 -4.12	RMS error : 0.01				0.55303	0.67845		
					-1.52	-4.12		

3. NEACRP HZP A1 case:

4. NEACRP C1 Case.

S.S Parameter	Codes	CASE 0	CASE 1	CASE 2	CASE 3	CASE 4
koa	PANTHER(ref.)*	1.03540	1.03347	1.00496	0.98702	1.00193
	PURDUE/NRC(1)*	1.03550	1.03354	1.00624	0.98745	1.00224
$k_{e\!f\!f}$	MASTER*	1.03550	1.03354	1.00509	0.98745	1.00223
	RAST(NEM/ANM)	1.03568	1.03371	1.00492	0.98730	1.00230
	RAST(NEM/NEM)	1.03558	1.03364	1.00487	0.98720	1.00219
F_{XY}	PANTHER(ref.).	1.3630	1.4320	1.3390	5.4310	3.6220
	PURDUE/NRC(1)	1.3628	1.4369	1.5701	5.4476	3.6163
	MASTER	1.3628	1.4370	1.3379	5.4485	3.6187
	RAST(NEM/ANM)	1.3604	1.4360	1.3349	5.4947	3.6434
	RAST(NEM/NEM)	1.3611	1.4340	1.3361	5.4880	3.6410
	PANTHER(ref.).	2.7200	2.4600	1.0660	2.7960	2.7810
	PURDUE/NRC(1)	2.6732	2.4338	1.1072	2.7410	2.7283
F_Z	MASTER	2.6730	2.4334	1.0591	2.7418	2.7284
	RAST(NEM/ANM)	2.6915	2.4537	1.0547	2.7613	2.7480
	RAST(NEM/NEM)	2.6832	2.4459	1.0596	2.7543	2.7404
	PANTHER(ref.).	0.75670	0.70060	-0.01570	0.76580	0.76700
	PURDUE/NRC(1)	0.75650	0.69830	0.02920	0.76610	0.76680
AO	MASTER	0.75660	0.69850	-0.01320	0.76620	0.76680
	RAST(NEM/ANM)	0.76015	0.70280	0.00913	0.77128	0.77129
	RAST(NEM/NEM)	0.75787	0.70047	-0.01292	0.76866	0.76906

3. MSLB Phase II: RAST-K

O J. B. Taylor and K. N. Ivanov, "OECE/NRC PWR MSLB Benchmark Forth Workshop: Analysis of the Second Exercise," OECD, Paris, Jan.24-25, 2000.

5. MSLB Phase II.

Neutronics Model		Ref.*	NEM1	NEM4	CMFD1	CMFD4	Ref.*	NEM1	NEM4	CMFD1	CMFD4	Ref.*	NEM1	NEM4	CMFD1	CMFD4	
		problem		Case A2				Case B2					Case C2				
	initial	CSB(ppm)	1156.6	1158.2	1160.9	1154.8	1158.4	1183.8	1197.4	1188.3	1192.0	1185.7	1156.6	1170.0	1160.9	1164.7	1158.4
Fast	state	3D Nodal Peak(Fq)	2.207	2.241	2.208	2.245	2.210	2.095	2.094	2.098	2.101	2.100	2.207	2.204	2.208	2.210	2.210
Transient at	transient	Peak Time(s)	0.095	0.095	0.095	0.095	0.096	0.100	0.153	0.154	0.147	0.133	0.095	0.124	0.098	0.111	0.122
	state	Peak Power	1.083	1.082	1.081	1.083	1.082	1.064	1.065	1.064	1.065	1.064	1.073	1.075	1.074	1.075	1.074
HFP		Power	1.036	1.035	1.036	1.036	1.036	1.039	1.040	1.039	1.040	1.039	1.031	1.032	1.031	1.032	1.032
	final	Max. Centerline Temp.	1679.6	1693.3	1692.4	1698.5	1698.0	1576.1	1568.0	1587.0	1573.0	1590.0	1723.8	1720.0	1740.0	1725.0	1742.0
	state	Doppler Temp.	555.2	546.2	553.8	546.4	546.4	552.4	551.0	551.0	551.1	551.1	553.9	552.6	552.6	552.7	552.7
		Moderator Temp.	324.9	326.2	324.9	326.2	326.2	325.0	325.1	325.0	325.1	325.0	324.8	324.9	324.8	324.9	324.8
		problem			Case A	1		Case B1				Case C1					
	initial	CSB(ppm)	561.2	566.3	562.4	565.0	562.0	1248.0	1261.3	1251.9	1254.0	1248.6	1128.3	1140.5	1131.9	1133.8	1129.0
Fast	state	3D Nodal Peak(Fq)	2.879	2.841	2.867	2.853	2.866	1.933	1.914	1.925	1.923	1.928	2.187	2.172	2.180	2.181	2.181
Transient	transient	Peak Time(s)	0.538	0.650	0.554	0.607	0.552	0.523	0.504	0.509	0.511	0.520	0.271	0.260	0.267	0.263	0.272
at	state	Peak Power	1.268	.880	1.214	1.018	1.262	2.315	2.654	2.626	2.557	2.450	4.411	5.000	4.606	4.864	4.400
HZP		Power	0.197	0.197	0.198	0.199	0.199	0.320	0.329	0.324	0.329	0.324	0.146	0.152	0.148	0.152	0.148
	final	Max. Centerline Temp.	679.3	666.5	678.6	675.1	681.1	559.7	567.3	569.2	569.0	567.3	674.2	697.3	703.6	697.4	700.3
	state	Doppler Temp.	324.9	324.3	325.0	324.9	325.2	350.0	352.2	351.1	352.2	350.8	315.9	317.3	316.4	317.3	316.3
		Moderator Temp.	293.2	293.1	293.3	293.3	293.3	297.7	298.2	298.0	298.1	297.9	291.5	291.8	291.7	291.8	291.6
		problem			Case A	4		Case B				Case D					
	initial	CSB(ppm)	1267.7	1274.1	1265.6	1261.9	1262.6	793.6	797.9	794.3	796.5	793.7	793.6	797.9	794.3	796.5	793.7
Slow	stata	3D Nodal Peak(Fq)	1.880	1.855	1.868	1.881	1.877	2.886	2.860	2.874	2.869	2.873	2.886	2.860	2.874	2.869	2.873
Transient	state	Radial Power Peak(Fxy)	1.242	1.226	1.235	1.243	1.243	1.912	1.896	1.905	1.906	1.909	1.912	1.896	1.905	1.906	1.909
at		Peak Time(s)	82.14	82.83	82.15	81.15	81.85	34.30	34.53	34.54	34.57	34.41	39.40	39.23	39.57	39.48	39.65
HZP	transient	Peak Power	0.356	0.356	0.356	0.357	0.355	1.348	1.293	1.286	1.208	1.208	0.969	1.095	1.085	1.047	1.039
	state	Max. Fuel Doppler T.	358.7	358.1	358.3	355.1	358.3	315.2	315.9	328.7	317.2	327.0	312.6	324.7	314.1	314.3	313.9
		Max. Coolant Outlet T.	295.3	298.9	299.0	299.2	299.0	290.5	292.4	296.9	292.6	296.4	290.2	292.0	292.0	292.0	292.0

2. NEACRP 3-D LWR Core Transient: Summary for FAST & SLOW TRANSIENT

* M. P. Knight and P. Bryce," Derivation of a Refined PANTHER Solutions to the NEACRP PWR rod-Ejection Transients," Joint Int'l Conf. on Mathmatical Methods and Supercomputing for Nuclear Applications, Saratoga Springs, NY, October 5-9, 1997, p. 302.

- [1] H. Finnemann, F. Bennewitz and M. R. Wagner, "Interface Current Techniques for Multidimensional Reactor Calculations," *Atomkernenergie*, **30**, 123-128 (1977).
- [2] K. S. Smith, "An Analytic Nodal Mehtod for Solving the Two-Group, Multidimensional, Static and Transient Neutron Diffusion Equations," *Thesis for M.S.*, MIT (March 1979)
- [3] R. D. Lawrence and J. J. Dorning, "A Nodal Green's Function Method for Multidimensional Neutron Diffusion Calculations," *Nucl. Sci. Eng.* 76, 218-231 (1980)
- [4] (1995)
- [5] W. Shen, Z. Xie and B. Yin, "The Green's Function Nodal Expansion Method for Light Water Reactor Diffusion Calculations," *Nucl. Sci. Eng.*, **121**, 130 135 (1995).
- [6] H. W. Cheng and N. Z. Cho, "A Spectral-Galerkin Coarse-Mesh Approach To Solving The Two-Dimensional Multigroup Diffusion Equations," Ann. Nucl. Energy, Vol. 24., No.11, pp. 883-900, 1997.
- [7] H. G. Joo, D. Barber, G. Jiang, T. Downar, "PARCS : A Multi-Dimensional Two-Group Reactor Kinetics Code Based on the Nonlinear Analytic Nodal Method," PU/NE-98-26, Purdue University, September 1998.
- [8] H. C. Lee and C. H. Kim, "Unified Nodal Method for Solution to the Space-Time Kinetics Problems," *Inter. Meeting on Math. Method for Nuclear Applications*, Sep. 9-13, Salt Lake, Utah, USA. (2001)
- [9] Y. S. Liu, et al., "ANC A Westinghouse Advanced Nodal Computer Code," WCAP-10966-NP-A, December, 1985.
- [10] "The ROCS and DIT Computer Codes for Nuclear Design," CENPSD-266-P-A, Combustion Engineering, Inc. (1983).
- [11] K. S. Smith and T. J. Cronin, "SIMULATE-3 Methodology," STUDSVIK/SOA-92/02 (1992)
- [12] , "NEM -7," '99 , p54, , . (Oct. 1999)
- [13] "Benchmark Problem Book," ANL-7416, Suppl. II, Argonne National Laboratory (1977).
- [14] H. Finnenmann, and A. Galati, "NEACRRP 3-D LWR Core Transient Benchmark," NEACRP-L-335 (Rev.1), Nuclear Energy Agency, Jan. 1992.
- [15] R. Fraikin, "PWR Benchmark on Uncontrolled Rods Withdrawal at Zero Power," NEA/NSC/DOC(96)20 (Sep. 1997)
- [16] K. N. Ivanov, T. M. Beam, A. J. Baratta, A. Irani and N. Trikouros, "PWR Main Steam Line Break (MSLB) Benchmark," NEA/NSC/DOC(99)8, (April. 1999)
- [17] R.A.Shober, "A Nodal Method for Solving Transient Few Group Neutron Diffusion Equation," ANL-78-51, Argonne National Lab. June 1978.