

Abstract

The object of this study is to estimate the methods that are required to transient condition experiment data analysis and to establish the probabilistic design limit of the cladding rupture. Cumulative damage estimation and Weibull probability estimation of WPF (Whole Pin Furnace) transient condition experiment data are performed. Probabilistic methods were derived with these analyses to determine the effective thickness reduction due to eutectic penetration depth. In the results, it is found that 100% cladding reduction of eutectic penetration depth is conservative. About 90% cladding reduction of the eutectic penetration depth is favorable as a thickness of cladding.

KALIMER(Korea Advanced Llquid 가 MEtal Reactor) , HT9 . HT9 LMR 640°C 316SS , [1,2].

KALIMER KALIMER , , 가

가 WPF (Whole Pin Furnace) , median rank

, Weibull , Weibull (paper) Weibull (parameter) Weibull . , 가 .

.

.

2.

ANL (Westinghouse) 가 FCTT(Fuel Cladding Transient Tester) . , /HT9 , WPF EBR-II 가 .

2.1 FCTT(Fuel Cladding Transient Tester) [3,4]

370°C FCTT (hold temperature) 5.6°C/s 가 , 500°C 1050°C 18.8 ~ 39.5 MPa , 1050°C 500°C 486.7 ~ 517.7 MPa .

1.

0.4

0.8

1.2

1.6

)

0.0

1 Dorn parameter (FCTT

HT9

-1.6

-1.2

-0.8

-0.4

$$\ln \boldsymbol{q} = A + B \ln \left[\ln \left(\frac{\boldsymbol{s}^*}{\boldsymbol{s}} \right) \right] \tag{1}$$

$$t_r = \boldsymbol{q} \exp\left(\frac{Q}{RT}\right) \tag{2}$$

B = 12.47

Q = 70,170 cal/mole

$$A = 24.942 - 0.153T_{H} + 9.488 \times 10^{-5} T_{H}^{2} \qquad T_{H} < 871 \text{ }^{\circ}\text{C}$$
$$= -36.1 + 1.5 \tanh\left[\frac{(T_{H} - 871)}{80}\right] \qquad 871 \text{ }^{\circ}\text{C} < T_{H} < 1050 \text{ }^{\circ}\text{C} \qquad (3)$$

WPF							6
(FM1~F	M6)		가		. FM1~FM3		
500°C	6°C/s		820°C	가	,	(11.4 a/o)	FM4
	770°C	가	. FM1~FM3				
	(cladding thinning)					, FM4	ŀ
	24%				, 가		

517°C 14.4Mpa ,

.

2 FM5

1 WPF

1. WPF

	(a/o)		(°C)	(min)	(
					%)
FM1	3.0	1.0	820	67 [†]	64
FM2	3.0	1.0	820	112 ^f	67
FM3	2.2	1.4	820	146 ^f	65
FM4	11.4	1.5	770	68 ^f	24
FM5	11.4	1.5	ramp to	3	0
			780, cool		
FM6	11.3	1.0	670	2160	0

.

1.0

,

3. 가

가

Cumulative Damage Fraction) 가

$$CDF = \int_0^t \frac{dt}{t_r(\mathbf{s},T)}$$

1.0 median(50%)

4. Weibull [8,9]

,

(CDF,

,

,

(4)

Weibull 가 (failure rate curve shapes) β . Weibull , β 1 (exponential distribution) , β 3.44 (normal distribution) Weibull .

Weibull (cumulative distribution function) [8].

$$F(t) = 1 - e^{-(t/h)^{b}}$$
(5)

(characterisctic life or scale parameter) η = β = (shape parameter)

.

t =

Weibull

,

(mechanism)

[9].

.

,

.

η

$$(R + F)^{N_{0}} = [(1 - F) + F]^{N_{0}}$$

$$= (1 - F)^{N_{0}} + N_{0}F(1 - F)^{N_{0}-1} + \frac{N_{0}(N_{0} - 1)}{2!}F^{2}(1 - F)^{N_{0}-2} + \cdots$$

$$= 0.50$$
(10)
$$F = (cumulative distribution function)$$
(10) rank binomial expansion 0.5 F
(term) 2† 2†
Benard [8].
$$F = \frac{i - 0.3}{N_{0} + 0.4}$$
(11)
(12)
Leonard Johnson 7† (rank)
Rank Increment = $\frac{(N + 1) - (Previous adjusted rank)}{1 + (number of items beyond previous suspended item)}$
(12)
Drew Auth Leonard Johnson 7† (rank
increment) (13) Auth [8].
Adjusted Rank = $\frac{(Inverse Rank) \times (Previous Adjusted Rank) + (N + 1)}{(Inverse Rank N_{0})}$
(13)
Inverse Rank N_{0}
rank Benard
2 n 2 i n 2 i 2 i

5. WPF

WPF 가(over-estimation) . 가 1 median 가 Fulton Findings Weibull . Weibull Smith [10]. 5.1 WPF 가 (hold temperature), ,

(eutectic reaction) . , WPF (pre-transient) MACSIS(A Metallic Fuel Performance Analysis Code for dimension Simulating In-Reactor Behavior under Steady-State Conditions) [2]. MASIS , EBR-II 1 , (End of life) 2 . , ,

,

2 WPF (MASIS) WPF

		fission gas release		(°C)
	(a/o)	(cc at STP)	(IMFa)	(0)
FM1	3.0	30.07	4.7218	820
FM2	3.0	30.07	4.7218	820
FM3	2.2	19.67	2.4077	820
FM4	11.4	136.47	12.7993	770
FM5	11.4	136.47	12.7993	770
FM6	11.3	135.27	14.4	517

WPF				가		, F	M1~FN	/I3			
	가	가				(two	phase	region)	Lantha	nide	
[1	11]									:	가
,								가		(effe	ective
thickness	;)				,			brittle			
			100%				bri	ttle	50%	가	,
50%											
									F	ortran	
		,					hoop	stress	가	가	
			가	hoop	stress						
	,					가		3			

		3 WPF				
CDF	100%*	90%*	80%*	70%*	60%*	50%*
FM1	6.9551	3.4953	2.0353	1.3114	0.9091	0.6657
FM2	23.5477	10.0256	5.1770	3.0432	1.9603	1.3514
FM3	1.1236	0.5986	0.3623	0.2396	0.1690	0.1251
FM4			5.3	616		
FM6			1.2	989		

*cladding thinning of eutectic penetration depth

5.3616 , 가	FM4 FM6	1		1
5.2				
가	가	,	가	

(uncertainty)

.

, (shape)

•

가 Weibull ,β. 가가 , 가 , β 가 . 가 . , median . ,

median ,

Weibull , median 가 , β Weibull . ,β 기· . , 가 가 . β median . , 가 Weibull β .

5.3 Weibull

WPF median rank . 90% .

4 WPF		(90%)
	CDF	Rank	Median Rank
FM3	0.5986	1	12.96
FM6	1.2989	suspended	
FM1	3.4953	2.250	36.11
FM4	5.3616	3.667	59.26
FM2	10.0256	4.833	82.41

가 , Benard FM6

(unreliability) . 5 median .

rank

	5	WPF	median rank
		100% ~	60% ~
		70%*	50%*
Median		12.96	12.96
Rank		36.11	31.48
		59.26	56.17
		82.41	80.86

*cladding thinning of eutectic penetration depth

WPF			Weibull		, r	ank
regression method			,			
		. MLE(Maximum	Likelihood	Estimation)		
sample size가 10		가가 rank r	egression m	ethod		
, \	WPF	(sample size)가	4	,	r	ank
regression method						
6		Weibull				

6 Weibull parameter

	100%*	90%*	80%*	70%*	60%*	50%*
β	0.880	0.908	0.887	0.802	0.733	0.686
η	10.875	6.190	4.104	3.114	2.771	2.305
Mean	11.59	6.48	4.35	3.52	3.36	2.98
Median	7.17	4.13	2.72	1.97	1.68	1.35
std.	13.21	7.15	4.92	4.43	4.67	4.46
Deviation						

5.4 FM5 PRISM

PRISM		가 ,		major damage			' <u>10%</u>
		95%가		<u> </u>	. Weibull		
	10%		90%		upper bound		
	Weibull plot					,	8

CDF	100%*	90%*	80%*	70%*	60%*	50%*
Confidence	0.1155	7.504 ^{-10⁻²}	4.403 ^{-10⁻²}	2.066 ⁻ 10 ⁻²	1.177 ^ 10 ⁻²	6.687 ^ 10 ⁻³
90%	~ 6.1404	~ 3.5895	~ 2.3957	~ 1.7137	~ 1.4056	~ 1.1205
	*claddi	ing thinning o	of eutectic p	enetration o	lepth	
Major damage			, 90%	uppe	er bound	
		가				,
가	,	Weibull	β			4
FM5						
	0.08 - - - - - - - - - - - - - - - - - - -			EM5 2 765	8x10 ⁻²	
	0.02 -		•			
	0.00					
	0.00	<u> </u>	70 8	<u> </u>	100	
	T	hickness reduc	tion of eutectic	penetration dep	oth(%)	
	4	FM5	10%			
(LO	F, Loss Of	Flow accid	ent)			
FM5						

.

7 10%

2.7657×10 ⁻²	80%			90%	upper
bound		80%			
. FM5			,		

β 90% . .

6.

Weibull 가 , 가 Weibull median , 50% 1 . 가 1 , 가 가 가

WPF

,

가 가 Weibull Weibull -

,

median . 가 Weibull , β -.

WPF Weibull 가 , 90% β 0.908 , 가 . , FM4 CDF 100% 90% median 가 .

, 100% . 가 , 가 .

EBR-II LOF FM5 80% d , 10% 가 가 , 10%

가 η β median •

가 가 HT9 . 가 가 ,

- [1] Raymond J. Puigh, "In-Reactor Creep of Selected Ferritic Alloys", Effects of Radiation on Materials: Twelfth International Symposium, ASTM STP 870, American Society for Testing and Materials, 1985, pp. 7~18
- [2] , , " HT-9 ", 2000 , , 2000
- [3] N.S. Cannon, Simulated Transient Behavior of HT9 Cladding, WHC-SA-0127-FP, Westinghouse Hanford Company, 1988
- [4] F.H. Huang, Transient Failure Behavior of HT9, WHC-SA-2513-FP, Westinghouse Hanford Company, 1994
- [5] Y.Y. Liu et al., "Behavior of EBR-II Mk-V-type fuel elements in simulated loss-offlow test", Journal of Nuclear Materials, 204 (1993) 194~202
- [6] J.M. Kramer et al., "Modeling the behavior of metallic fast reactor fuels during extended transients", Journal of Nuclear Materials, 204 (1993) 203~211
- [7] Y.Y. Liu et al., Whole-Pin Furnace System: An Experimental Facility For Studying Irradiated Fuel Pin-Behavior under Potential Reactor Accident Conditions, CONP-900804—24, 1990
- [8] Robert B. Abernethy et al., The New Weibull Handbook; 2nd Edition, Gulf Publishing Company, 1996
- [9] Robert A. Mitchell, Introduction to Weibull Analysis, Pratt&Whitney Aircraft, 1967
- [10] Robert B. Abernethy, PlayTIME With SuperSMITH; 2nd Edition, Wes Fulton, 1997
- [11] A.B. Cohen, "Fuel/cladding compatibility in U-19Pu-10Zr/HT9-clad fuel at elevated temperature", Journal of Nuclear Materials, 204 (1993) 244~251