2002

CFD B&C Loop

Analysis for Thermal Mixing Experiment in B&C Loop using CFD

, , , 150 B&C Loop (CFD) **CFX4.4** 가 가 (sparger) (chocking) 20 **CFX4.4** B&C Loop **CFD** 가

Abstract

The benchmark calculation for a thermal mixing experiment in the B&C Loop facility was performed to develop a thermal mixing model in quenching tank using CFX4.4. A steam discharge through the sparger and the condensation phenomenon were modeled with the chocking flow and the steam condensation model to generate the boundary condition of CFX4.4 for the thermal mixing behavior. The transient calculation results in about 20 seconds show a good agreement of the temperature distribution with that of experiment. Therefore, the CFD code with the steam condensation region model can simulate the thermal mixing behavior when the steam is condensed in quenching tank. The numerical model for the thermal mixing taking place for a long time can be developed by this method.

1.

		APR1400			B&C Loop
가	(sparge	r)			
		[1].	APR1400		
가				IRWST	IRWST
				[2]	
	. B&C loop				
	가				
60		APR1400	IRWST		가
	30		[3].	B&C Loop	
					APR1400
					(CFD)
	B&C Loop				
		CFX4.4			
		[4,5]			,
C	FX		B&C Loop		20
2. B&C I	лоор	[1]			
2.1					
B&C	Loop				1
	[1].	가		0.6m,	7는 3m
	,	100kW	가	7 2 in	ch
16N	ЛРа		. 가		가
	, APR1400)			

.

144	64			0.01m	
	0.025m		,		1.95m
	$0.00256m^2$	가	LRR(Load Reduction	Ring)	
가				HV	-202
			(20~90°C), フト	(60~150bar)	LRR

•

2.2 CFD

			CFD		LRR
,	가	100 bar		가 20 °C	
	LRR			2	

-	가 ,			LRI	R				
	CFX			가					2
			24	(1)				
					120~17	0 °C			
		25°C				가	가	TC636	
28~29°C			가						
		가							
	TC635	TC636					,		
		가 가					7	የት	
			가						
Т	C649, TC6	50	가 TC641	l, TC642				,	
						TC653	, TC654	TC645	, TC646
						,			
							ТС638, 1	C646	TC654
		TC638	가					TC	
2~3 °C									

.

,

3. CFD

.

3.1

	B&C Loop	가			100 bar				20
°C				3	가		100 b	ar	
			20		50bar, 50		20	bar	
	,					PT207			
					가		20 bai	r	가
	(air clearing))		8 bar					
20	4~5bar,	50		2~3 bar					
					(chocki	ng)			,
						フ	나 가		[2,4,5].
	1~2								가
2	(1)				4		(1)	\mathbf{P}_{o}	PT207
	T _o	PT207	,				C_{f}		[6] .
	PT207]	ГС217		PT207		
	3	°C		,					

가

.

,

가

$$\frac{x_c}{r_o} = \frac{\left[20.57(\frac{G_o}{G_s})^{0.713}\right]}{\left[(\frac{\mathbf{r}_{\infty}}{\mathbf{r}_s})^{0.384} B^{0.801}\right]} \qquad B = \frac{(h_f - h_{\infty})}{(h_s - h_f)}$$
(2)
$$\frac{width}{x} = \tan 13^o$$
(3)

가

 (m_e) $(m_{entrain})$ (m_{cond}) (4), (5), (6) .

$$m_e + m_{entrain} = m_{cond}$$

$$P_e A_e + P_e (\mathbf{p}DH - A_e) + \mathbf{r}_e V_e^2 A_e = P_{cond} A_{cond} + \mathbf{r}_{cond} V_{cond}^2 A_{cond}$$
(5)

$$\mathbf{I}_{e}\mathbf{A}_{e} + \mathbf{I}_{\infty}(\mathbf{p}\mathbf{D}\mathbf{H} - \mathbf{A}_{e}) + \mathbf{I}_{e}\mathbf{V}_{e}\mathbf{A}_{e} - \mathbf{I}_{cond}\mathbf{A}_{cond} + \mathbf{I}_{cond}\mathbf{V}_{cond}\mathbf{A}_{cond}$$

$$m_e h_e + m_{entrain} h_{entrain} = m_{cond} h_{cond}$$
(6)

,
$$7^{\dagger}$$

. $(P_{e}), (\rho_{e}), (h_{e})$
. 7^{\dagger} 7^{\dagger}
(7), (8), (9) [8]. (P_{o})
(T_{o}) PT207
(5)
 7^{\dagger} , (4), (6)
. 2 (4), (5), (6)
1 .

•

$$\frac{T^*}{T_o} = \frac{2}{k+1}$$
(7)

$$\frac{P^*}{P_o} = \left(\frac{2}{k+1}\right)^{k/(k-1)}$$
(8)

$$\frac{\boldsymbol{r}^*}{\boldsymbol{r}_o} = \left(\frac{2}{k+1}\right)^{1/(k-1)} \tag{9}$$

2 (4), (5), (6) 5.2m/s, 25 °C , 9.6m/s, 20 °C . B&C Loop , 7 7 CFX . 20 7 7 .

3.2 B&C Loop CFX-Build 2 (cylindrical) . 가 LRR ,

64 가 가 3 . , 2 (1) 6 CFX 가 • (41×88) 3,608 . Dirichlet k_i i . (turbulent intensity) 가 64 가 가 10% [10]. Neumann 가 (-) , CFX 2 3.3 B&C Loop CFD , 가

> . CFX4.4 Navier-Stokes k- [10]. Boussinesq 7 multi-fluid homogeneous [10]. 20 , 0.001 0.01 60 70 ,

[10].

가 1.0E-03 hybrid (under relaxation factor) 0.25~0.35 AMG(Algebraic Multi-grid)

 $\frac{\partial}{\partial t}(r_a r_{\partial}) + \nabla \bullet (r_a r_{\partial} V_a) = 0$ ⁽¹⁰⁾

$$\frac{\partial}{\partial t} (r_{a} \boldsymbol{r}_{\partial} V) + \nabla \bullet \left(r_{a} \left(\boldsymbol{r}_{\partial} V_{a} \otimes V_{a} - \boldsymbol{m}_{a} \left(\nabla V_{a} + \left(\nabla V_{a} \right)^{T} \right) \right) \right) = r_{a} \left(\mathbf{B} - \nabla P_{a} \right)$$
(11)

$$\frac{\partial}{\partial t} (r_a r_{\partial} H_a) + \nabla \bullet (r_a (r_{\partial} V_a H_a - I_a \nabla T_a)) = 0$$
⁽¹²⁾

$$\frac{\partial}{\partial t}(\mathbf{r}k) + \nabla \bullet (\mathbf{r}Vk) - \nabla \bullet \left[\left(\mathbf{m} + \frac{\mathbf{m}_{T}}{\mathbf{s}_{k}} \right) \nabla k \right] = P + G_{buoy} - \mathbf{r}\mathbf{e}$$
(13)

$$\frac{\partial}{\partial t}(\boldsymbol{r}\boldsymbol{e}) + \nabla \bullet (\boldsymbol{r}\boldsymbol{V}\boldsymbol{e}) - \nabla \bullet \left[\left(\boldsymbol{m} + \frac{\boldsymbol{m}_{T}}{\boldsymbol{s}_{\boldsymbol{e}}} \right) \nabla \boldsymbol{e} \right] = C_{1} \frac{\boldsymbol{e}}{k} P - C_{2} \boldsymbol{r} \frac{\boldsymbol{e}}{k}$$
(14)

$$\mathbf{r} = \sum_{\substack{\mathbf{a}=1\\N_{-}}}^{N_{p}} r_{\mathbf{a}} \mathbf{r}_{\mathbf{a}} \qquad V = \frac{1}{\mathbf{r}} \sum_{\substack{\mathbf{a}=1\\\mathbf{a}=1}}^{N_{p}} r_{\mathbf{a}} \mathbf{r}_{\mathbf{a}} V_{\mathbf{a}}$$
(15)

$$\boldsymbol{m}_{T} = \sum_{\boldsymbol{a}=1}^{N_{p}} r_{\boldsymbol{a}} \boldsymbol{m}_{T\boldsymbol{a}} \qquad \boldsymbol{m}_{\boldsymbol{a},eff} = \boldsymbol{m}_{\boldsymbol{a}} + \boldsymbol{m}_{T\boldsymbol{a}}$$
(16)

$$\boldsymbol{m}_{T} = \boldsymbol{C}_{\boldsymbol{m}} \boldsymbol{r} \frac{k^{2}}{\boldsymbol{e}}$$
(17)

$$G_{buoy} = -\frac{\mathbf{m}_T}{\mathbf{s}_T} \mathbf{b} g \bullet \nabla T \tag{18}$$

$$\boldsymbol{r} = \boldsymbol{r}_{o} \left[1 - \boldsymbol{b} \left(T - T_{o} \right) \right]$$
⁽¹⁹⁾

3.4

7 (a) 1 8 . 7

•

가

. 가

가 ,

. 가

(A),

,

, 9

가

가

•	
가	2~3°C 가
	가
	1~2°C

가 가

•

2.2

.

B&C Loop	2	4		CH	FX				1
2	20		8						
가	5~6								
. 24						가	가	TC636,	TC644
	7	ŀ					1~2		
				가				,	
					$20^{\circ}C$				
		가 64							
					. 1	FC638	3		
가	2~3°C	가	,						
	•	가				TC6	647		가
	1~2°C		,		CFX	가			
							•		
				가			•	TC642	TC643
		2~3°	С			ラ	'ŀ		

.

.

4.

B&C Loop		CFX4.4
가		
	. 가	
	CFX	
20	. CFX4.4	
		가

가

CFX

•

.

B&C Loop

" 1) ", 2002 . 2002 2) U.S NRC, 1981, "Suppression Pool Temperature Limits for BWR Containments", NUREG-0783 3) H. S. Kang, Y. Y. Bae, J. K. Park, "Numerical Study on the Local Temperature in IRWST Pool", Proceedings of the ICONE10, April, 2002 4) D. H. Cook, 1994, "Pressure Suppression Pool Thermal Mixing", NUREG-3471, ORNL/TM-8906 5) Per F. Peterson, et al, "Pressure Suppression Pool Mixing in Passive Advanced BWR Plants", Proceedings of NURETH-9, October, 1999 6) I. E. Idelchik, 1986, Handbook of Hydraulic Resistance, 2nd ed., Hemisphere Publishing Corporation 7) Y. Y. Bae etc, 2000, "Analysis on Flow Transients in a Pipe with Sparger and Load Reduction Ring", Int. Comm. Heat Mass Transfer, Vol. 27, No. 8, pp.1131-1142 8) Frank M. White, Fluid Mechanics, 2nd ed., McGRAW-HILL International Editions, 1986 9) Frank M. White, Viscous Fluid Flow, 2nd ed., McGRAW-HILL International Editions, 1991 10) AEA Technology, "CFX4.4 Manual", 2001

unit : mm

Fig. 1 Schematic diagram of B&C Loop facility

Fig. 2 Temp. distribution in the quench tank [1]

Fig. 3 Pressure behavior at PZR and sparger head

Fig. 4 Mass flow rate from sparger (flow meter vs calculation)

Fig. 5 Steam condensation region model around

Fig. 6 Geometry and grid model

X

Ζ

Fig. 7 Velocity profile and temp. distribution

Fig. 8 Temp. distribution in quench tank (Experiment vs CFD)

	Table 1	Input	Parameters	for	Governing	Eqs.	(4)	&	(6)	at	time	2	sec.
--	---------	-------	------------	-----	-----------	------	-----	---	-----	----	------	---	------

Input Parameter	Unit	Value
Steam pressure at a hole, P _e	bar	4.3
Total area of 64 holes (Bottom), Ae	m ²	0.005(0.005)
Steam density at a hole, ρ_e	kg/m ³	2.58
Condensed water pressure, P _{cond}	bar	1.2
Flow area of condensed water (Bottom), A _{cond}	m^2	0.1387(0.0007)
Condensed water density, ρ_{cond}	kg/m ³	995.7
Flow area of entrained water (Bottom), Aentrain	m^2	0.12(2.9E-04)
Entrained water density, $\rho_{entrain}$	kg/m ³	998.3

Table 2 B. C. properties at 2 seconds after the start of experiment

	ltem	Unit	Value
Sparger	Condensed water velocity	m/s	5.6 / (23.5)
side part /	Condensed water temp.	°C	28 / (28)
(bottom part)	Condensed water ki	m^2/s^2	0.47 / (9.30)
	Condensed water ε_i	m^2/s^3	107.54/ (3781.58)
	Entrained water velocity	m/s	10.4 / (24.9)
	Entrained water temp.	°C	20 / (20)
	Water expansion coeff.	K-1	2.504E-04
	Water density	kg/m ³	998.3
	Water viscosity	Pa sec	1.002E-03
	IRWST air density	kg/m ³	1.190E+00
	IRWST air viscosity	Pa sec	1.8160E-05
	Pressure condition at IRWST upper region	Bar	1.0