Experimental Analysis on the Influences of Support Condition and Shape in Fuel Fretting Wear

Abstract

The influence of contact force and shape on fuel fretting wear is analysed experimentally. As for the supporting condition between fuel rod and spring/dimple, the contacting force of 5 N, 0 N (Just-contact) and the gap of 0.1 mm are used. Two different shapes of spring/dimple specimen are used. Investigated is the wear characteristic depending on the grid spring shape. Detail examination of wear scar is also performed using SEM micrographs. As results, more wear occur when the spring of truncated wedge in the case of non-contacting force. However, the truncated wedge shaped spring causes less wear than the convex shaped spring does in the case of positive contact force and the truncated wedge spring being used. Through the detail examination using SEM, it is thought that the difference in the protrusion is caused by the different wear mechanism, which is influenced by the spring shape.

(Fuel Assembly) (Spacer Grid) (Fuel Rod) . . 가 . .

> (Flow-Induced Vibration) , , (Fretting Wear)

/ [1] / ブト / SEM

[2]

SEM

2.

.

1.

.

.

/

1.; 1:Servo-Motor, 2: Eccentric Cylinder, 3: Lever, 4:Movable Hinge, 5: LVDT, 6: Load Cell, 7: Tube Specimen.

2.2

1.

Specimen Type	Туре А	Туре В
Spring Shape	I DI	
Typical Wear Scar Shape	RES LIE MARCH	
Contact Contour (Axial)	Truncated wedge	Convex
Contact Contour (Transverse)	Concave	Convex
Spring / Dimple Shape	Different	Same
End Condition	Clamped at both ends	Clamped at both ends
Contact Length	4.5 mm	Depends on the contact force
Thickness	0.45 mm	0.38 mm

2.3

 $Q = F \sin a$

•

2.		가				
Protrusion / Wear	5N		0N		Gap	
	Type A	Type B	Type A	Type B	Type A	Type B
>1	9	6	5	5	4	1
<1	7	12	15	14	15	15
Total	16	18	20	19	19	16

•

•

•

. B 가

.

В . Α 가 가 Α . В • А В 가 • 4. 가 / 3가, 0.1 mm 가 / . 가 1. / . Truncated wedge 가 convex 가 Truncated wedge . convex • 2. 가 . 가 Truncated wedge 가 convex . 가 가 가 , 가 가 가 Truncated wedge convex . 가 가가 / • 3. / . / 가 / .

1.	4 ,	2001	245-251.
2.	4 ,	2002	

3. 4 , Program "WEARVOL", 2001-01-12-7083.

4. Hyung-Kyu Kim, Heung-Seok Kang and Kee-Nam Song, KSTLE International Journal, Vol.2, No. 2, 2001, 89-92.

.