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ABSTRACT 
 

Analyses for complex real-world systems inevitably involve many uncertainties and their 
analysis is one of the essential processes to address our state-of-knowledge in evaluating 
performance of these systems. In this point, primary concerns of the uncertainty analysis are to 
understand why uncertainties arise, and to evaluate how they impact the results of the analysis. 
In recent times, the uncertainty analysis has focused on parameters of the logical or physical 
models being used in PSA. As the field of PSA matures, more attention is paid to the explicit 
treatment of uncertainty sources that are addressed in the models themselves and the accuracy of 
the models. When the model uncertainties are incorporated into a formal framework of 
uncertainty analysis, the primary step for evaluating impacts of these uncertainties is to 
determine sources and types of uncertainty to be addressed in an underlying model itself and in 
turn model parameters. Depending on the states of knowledge involved in the subject of interest 
and available evidence, we can choose either a deterministic model or an aleatory model. In 
addition, uncertainties addressed in parameters of the underlying model can be modeled in a 
different way, e.g., epistemic, aleatory, or both of them. The foregoing classification of 
uncertainty sources is related to important practical aspects of modeling for complex 
technological systems and we have clear advantages of the separation in real applications. The 
main objective of this paper is to clarify various sources of uncertainty that would often be 
encountered in the modeling process for the risk and reliability analysis and introduce 
underlying approaches for handling them quantitatively.  
 

I. INTRODUCTION 
 

In probabilistic safety assessment (PSA) of nuclear power plants, uncertainty is an essential 

part of formal decision making on the plant safety.  Traditionally, the uncertainty analysis has 

focused on parameters of the logical or physical models used in the PSA (i.e., parameter 

uncertainty), rather than uncertainty addressed in the models themselves (i.e., model 

uncertainty). For example, PSA has been performed to obtain a distribution of the different 

component and system states based on best estimates of the models and parameter values.  In 

that case, the model involves only random or stochastic uncertainties. As the field of PSA 

matures, more attention is paid to the explicit treatment of sources of uncertainty that are 

addressed in the models themselves and the accuracy of the assumptions made in the modeling 

process as well as the parameter uncertainties. When the model uncertainties are incorporated 

into a formal framework of uncertainty analysis [1-5], our primary concern is to determine 



whether the underlying model is a deterministic one or an aleatory one and in turn which model 

parameters are subjected to epistemic uncertainty (called as subjective, reducible, state-of-

knowledge uncertainty) or aleatory uncertainty (called as random, irreducible, stochastic 

uncertainty) [2,6-10]. The aleatory portion of uncertainty deals with the randomness of an event 

and is not practically reducible since we don’t know and understand the underlying reasons and 

behaviors governing its randomness. Whereas, the epistemic portion of uncertainty deals with 

our state-of-knowledge about portions of our model and thus as we know more about the 

underlying problem, epistemic type of uncertainties can be effectively reduced. Thus, the 

objective of the aleatory uncertainty is to answer the question on ‘what might actually happen 

and with what probability’. Whereas, the objective of the epistemic uncertainty is to answer the 

question on ‘how well we know about a given problem and how much our knowledge about it 

might change with additional information’.  

 

The foregoing classification of uncertainty sources is related to important practical aspects of 

modeling for complex technological systems [9,10], including their probabilistic assessment, 

consistent decision-making under different uncertainty sources (e.g., what we know and how 

much we know about it), and proper propagation of uncertainties in the evaluation process. 

However, it should be noted that at a fundamental level, uncertainty is just uncertainty and this 

type of uncertainty is due to our lack of knowledge [9,10]. In addition, it is well accepted that 

probability is fundamentally one concept, namely, a measure of degree of belief and 

uncertainties are always quantified using subjective probabilities. Thus, if we can ever gain 

precise, accurate and complete knowledge about a subject (e.g., behavior in microscopic level of 

a physical quantity or time-dependent occurrence of an event) one may eliminate all the 

uncertainties associated with describing and modeling the behaviors of that subject. In real 

situation, however, this is neither possible nor practical. In that case, a convenient separation 

between those sources of uncertainties that are random in nature (i.e., aleatory uncertainty) and 

those that depend on our state of knowledge (i.e., epistemic uncertainty) is helpful in 

understanding the nature of the uncertainties, and can guide us in selecting appropriate 

uncertainty propagation methods. In other words, all uncertainties of the same types can be 

consistently combined for decision-making purposes, e.g., combination of aleatory (epistemic) 

uncertainties in case of aleatory (epistemic) inputs. In the computational process, both 

uncertainties must not be mixed with each other in the final results if they will be used as inputs 

to the decision-making. This is just because if the effects of all uncertainties of different types 

are mixed in to a single probability distribution in the prediction level, it is impossible to extract 

from the distribution the contribution of each type of uncertainty. In real applications, many 

PSA practitioners would overlook this point in their analysis and as a result they would be 

confused in interpreting the results of uncertainty analysis.  

 

The question of how to define and estimate different types of uncertainties is particularly 

critical in the risk and reliability assessment of complex technological systems where little 

evidence is available. Since a full description of uncertainties addressed in the modeling process 

of such systems involves various sources of uncertainties such as aleatory, epistemic, and model 



uncertainties, we also need to consider our thoughts about their treatment. Thus, the need for a 

consistent discrimination of different uncertainty sources becomes most obvious in the case of 

risk and reliability analysis. The main objective of this paper is to introduce a recent trend of 

uncertainty analysis being made in the field of risk and reliability analysis, including the need 

for clarification of various types of uncertainties that would often be encountered in the risk and 

reliability modeling process of complex systems and the underlying approaches for handling 

them. The encoding of uncertainties (or distributions) is one of the essential processes of 

uncertainty analysis, but the subject is not the main concern of this paper.  

 

II. CHARACTERIZATION OF MODEL UNCERTAINTIES 
 

In the process of a mathematical modeling for the complex problem of interest, we generally 

decompose the problem by using detailed relevant variables so that available historical and 

experimental data can be used to help determine the necessary inputs. This sort of 

decomposition makes it easier for us to think about the required assessments by making 

assessments separately for more understandable and manageable parts instead of directly for the 

entire problem. As a trade-off, however, the model decomposition leads to a variety of events or 

variables about which we are uncertain in an aleatory or an epistemic way. Whenever an 

assessment question is not described to be fully specific, that is, there is uncertainty on which 

value to provide as an answer for the question. In this section, the existing two viewpoints in 

interpreting the two uncertainty sources are introduced to better understand the concept of 

model uncertainty and consistently interpret the uncertainty analysis results.  

 

II.1 Meaning of Uncertainty and Its Description 
 

Many risk and reliability analyses would include both aleatory and epitemic inputs in their 

predictive models, and in the literature it is often recommended to divide those uncertainties for 

a consistent risk communication. While the aleatory uncertainty has been conventionally 

regarded as a property of the system or activity being studied, the epistemic uncertainty takes 

into account subjective and perceptional aspects. According to Hofer’s definition [8], the 

aleatory uncertainty arises from the fact that one cannot give a single value for an event, but 

rather give a population of values with chance. Thus, the value of the event can be thought of as 

randomly selected from the single true probability distribution that summarizes the variability 

within the population. Whereas, the epistemic uncertainty is characterized as uncertainty due to 

knowledge of the single true values of an event and lack of knowledge of a single exact 

probability distribution summarizing the variability within a population. Since the 

aforementioned two types of uncertainties become input to different decisions, then their 

propagation through the model needs to happen separately and presentation has to cater for two 

uncertainty dimensions. Helton [11] also claims: ‘When a distinction between stochastic and 

subjective uncertainty is not maintained, the likelihood of the deleterious events associated with 

a system and the confidence with which both likelihood and consequences can be estimated 

become commingled in a way that makes it difficult to draw useful insights.’ Whereas, Winkler 



[9] takes another viewpoint about those uncertainties: ‘If the problem is not decomposed in a 

reasonable way, various sources of uncertainties can be commingled in a way that makes it 

difficult to draw useful insights.’  

 

While the two former standpoints focus on a necessity of separation for ‘different types of 

uncertainty’ regardless of the decomposition level, the latter one relates it to ‘different sources 

of uncertain information’ due to the decomposition as a key motivating factor behind the desire 

to distinguish among types of uncertainty. According to the latter, the motivation for attempts to 

make distinctions between them is related to important modeling concerns. While the epistemic 

uncertainties play a great role when we have little evidence for the question of interest, the 

aleatory uncertainties do when we have more evidence. In order to get a clearer insight about 

meanings of the two uncertainty types, let’s consider a severe accident sequence with limited 

resolution or unspecified in many ways. Then, various phenomenological variables contributing 

to the containment peak pressure (e.g., in-vessel steam explosion, core melt temperature at the 

occurrence of the event sequence, etc.) are regarded as aleatory variables whose uncertainties 

are quantified by a probability distribution summarizing the variability within the potential 

population of relevant values. In that case, there may be two situations by which the aleatory 

variables may be treated by epistemic uncertainties: The first is when we redefine the above 

sequence with much more resolution so that the aforementioned aleatory variables can be 

subjected to epistemic uncertainties. The second is when possible stochastic variation of the 

aleatory variables is considered to be comparatively negligible in specific aspects of the 

phenomenological assessment of any event so that the aleatory variables can be treated as 

deterministic quantities with inaccurately known epistemic uncertainties.  

 

In recent times, most PSA practitioners [9,10] point out that at a basic level uncertainty is just 

uncertainty and there is only one kind of uncertainty stemming from our lack of knowledge 

concerning the problem of interest (i.e., epistemic uncertainty). However, the separation 

between aleatory and epistemic uncertainties is very important for our convenience in 

investigating complex problem and interpreting the uncertainty analysis results, rather than for 

basic philosophical reasons. In real applications, a decision for taking either aleatory or 

epistemic variables depends on the states of knowledge involved in the problem of interest. 

Although information comes in varying forms and from many sources, involving historical and 

experimental data, models, or experts, for example, some uncertainties are clearly easier to 

assess than others.  When we are asked for our subjective probabilities, in addition, it seems 

easier for them to think about probabilities for observable quantities than about unobservable 

quantities [9,12]. Also, we can make an attempt to distinguish ‘reducible uncertainties’ (for 

variables about which we can obtain some additional information) from ‘irreducible 

uncertainties’ (for variables about which obtaining further information is impossible or 

impractical). In that case, it can be useful to think about certain types of distinctions among 

uncertainties and in complex problems, we typically utilize all forms of information.  

 

The above characterization of uncertainty is very similar to a situation that ‘probability’ as a 



mathematical expression of uncertainty is just ‘probability, but we have two different 

interpretations of it (i.e., relative-frequency and subjective interpretation) [1,4,13]. While the 

relative-frequency interpretation of probability defines the probability of an event in terms of 

the proportion of times the event occurs in a long series of identical trials, the subjective 

interpretation of probability views it as a measure of degree of belief. As for the relative-

frequency approach, the issue in practice is the availability of an appropriate data set.  In many 

cases, no objective data may be available bearing directly on the event or variable of interest, 

but the situation of interest requires a subjective judgment in utilization of available data.  

Because of the need for this subjective judgment, the relative-frequency interpretation of 

probability does involve subjectivity and is added to the subjective interpretation. In this sense, 

the subjective interpretation of probability is considered as an extension of the relative-

frequency interpretation. Basically, the subjective probability is probability in the mathematical 

sense and can be treated according to the rules of a probability theory. However, its use is 

indispensable for a meaningful interpretation of the analysis results and as such, is essential for 

the decision-making process based on it. Under the subjective interpretation of probability, there 

is no desire for objectivity of data or true probabilities. Instead, the subjective probability is a 

function of the information that is available, including subjective information and relevant 

evidence, historical data about the problem of interest, and variability in relevant areas. The 

distinction between evidence and subjective information is useful in identifying sources of 

probabilistic information in practice, but probabilistic uncertainty analyses, supplementing risk 

assessments, can only work on the basis of the subjective probability concept. 

 

II.2 Characterization of Model Uncertainty 

 

In description of the real world of interest with a mathematical or predictive model, we are 

often faced with two different situations: one is that the description of model inputs can be 

deterministic and another we simply unable to predict their values in a deterministic way.   

 

In the former case, the model output is characterized by magnitudes of the deterministic model 

inputs and in the probabilistic sense the model outcome becomes always one (i.e., either always 

possible or always impossible). Like this, a model whose outcome is determined just by the 

deterministic inputs is characterized as deterministic model. Thus, the deterministic model can 

be expressed as a simple functional relationship whose output depends in a deterministic 

manner on various input parameters.  In practice, the values of the input parameters are not 

precisely known and, consequently, some imprecision attaches to the estimate of the model 

output. Uncertainty about the correct values of input parameters can be quantified by treating 

the parameters as random variables with appropriate probability distributions. When we develop 

the deterministic model, moreover, we often have a question on the accuracy of our model itself 

in predicting the real situation. This question is closely related to the fact that our predictive 

model itself is an approximation of the real world of interest and its accuracy depends on our 

knowledge in modeling the real world.  In other words, our model itself is always subjected to 

some degrees of uncertainties, due to our limited knowledge in prediction of the real situation.  



Since this type of uncertainty expresses our state-of-knowledge in modeling the real world, the 

model itself is considered an epistemic model and uncertainty addressed in the model itself is 

characterized as types of epistemic uncertainties. If there are no uncertainties in our model itself, 

the model will exactly predict the real values of the specific problem. Due to the model 

uncertainty, however, our predictions are subjected to either over-estimation or under-estimation. 

When the epistemic model uncertainty is considered, the overall variability in the resultant 

model outcome is due to both the uncertainty addressed in the model parameters and the 

uncertainty due to the model itself.   

 

On the other hand, there is a situation; when we have a limited knowledge on the values of the 

model parameters and thus we cannot specify single, exact values to the model parameters.  

This situation requires for us to employ uncertainty on the parameter values in the prediction of 

model output. In the latter case, the model output is determined by both the occurrence of the 

event (i.e., aleatory uncertainties) and its magnitude (i.e., epistemic uncertainties). While the 

model itself is given to be deterministic, that is, different model outcomes occur at random. 

Since this type of model contains probabilities on the occurrence of the model outcome whose 

values are evaluated by an aleatory model, it is characterized as aleatory model or probabilistic 

model [2].  In order to characterize the model output we would often employ a probabilistic 

model for the occurrence of the event and the magnitude of the model parameters characterizing 

the model output given that the event has occurred.  In the deterministic model, our concern is 

to determine a specific criterion of the model outcome and in turn to evaluate the magnitude of 

the model parameter (i.e., this is epistemic). On the contrary, our primary concern in the aleatory 

model is to estimate an occurrence probability of random event addressed in the model or 

probability distribution (i.e., this is aleatory), and in turn magnitude of the parameter value 

characterized by the event. To the end, the above descriptions can be summarized as follows: if 

the model prediction is a fixed event, the underlying model is characterized as a deterministic 

model; otherwise (if the model prediction is a random event), the underlying model can be 

characterized as an aleatory model. The aforementioned distinction of models is basically due to 

our state of knowledge in the modeling process of the problem of interest. Depending on details 

of the model decomposition, that is, a given model may include epistemic model inputs, 

aleatory model inputs, or both of them. In addition, our limited knowledge in the model 

formulations (e.g., structures of physical or logical models), in estimating the exact value of the 

model parameter, and in formulating the probabilistic model (e.g., an exact type of probability 

distributions or statistical parameters such as mean and variance) is categorized into epistemic 

uncertainty. Basically, these epistemic uncertainties are represented by subjective probability 

distributions that quantify the respective states of knowledge. Figure 1 characterizes measures 

of these various uncertainty sources that would be often encountered in the risk and reliability 

analysis. 

 

There are several examples that a given model uncertainty includes both aleatory and 

epistemic portions in the field of risk and reliability analysis. For example, let’s consider the 

impact of ‘impulse load’ on a physical system. The behavior of the system does not depend on 



our knowledge and follows the laws of physics about which we do not have a complete 

knowledge. In that case, our work is just to evaluate the performance of the system with 

uncertainty or near uncertainty about all of the conditions imposed to the system. Our 

uncertainty in a given situation is a function of the information that is available. For this, we 

first have to determine which type is the impulse event. In one situation, the event can be 

considered a random event with time and thus an aleatory model is appropriate to characterize 

uncertainty associated with the occurrence of the event. In another situation, it is considered an 

always-occurring event (a deterministic event) and thus no uncertainty is imposed to the 

occurrence of the event.  For the both cases, we do not know exactly the magnitude of the 

impulse load due to our incomplete knowledge and as a result our epistemic uncertainty is 

addressed when the magnitude is evaluated. Like this, an event is treated as a random variable in 

the aleatory model, but it is just parameter in the deterministic model.  One practical example 

[10] is a situation that a pipe whose failure is assumed to occur when the capacity of the pipe is 

smaller than the pressure load imposed on the pipe. The capacity may be time-dependent due to 

aging mechanism like flow-induced corrosion.  The load consists of two parts: normal, steady 

load and abnormal load due to transients. In the case of the steady-state pressure, there is no 

uncertainty related to time and thus the failure of the pipe is modeled in a deterministic way.  

In that case, the load is constant in time, but the failure of the pipe for a given time is 

determined by the relative magnitude of load and capacity at that time.  In the transient 

pressure load, the occurrence of transients is random in time (i.e., random parameter) and thus 

the failure of the pipe is also taken into account as a random, aleatory model. In that case, the 

failure of the pipe for a given time is conditional on both the occurrence of the transients at that 

time and the relative magnitude of load and capacity given that the transient has occurred.  The 

above example indicates that while quantities such as ‘time’ are taken into account as aleatory 

variables in the dynamic model whose inputs are subject to random phenomena, those quantities 

are just parameters in the static model and thus no uncertainty is imposed to them. As 

mentioned previously, such a decision for taking either aleatory or epistemic variables depends 

on our states of knowledge involved in the problem of interest.   

 

Another example [14] that a given model can be characterized as both aleatory and epistemic 

portions is a fault tree model of the AFW system failure. While the fault tree model itself is a 

deterministic model, the epistemic portions of the model uncertainty may arise when 

assumptions are made under out lack of precise knowledge about the system functionality. 

Typical sources of the epistemic model uncertainty contain modeling of only active components, 

application of different success criteria, and modeling of only perfect component failures. Once 

one of those models (e.g., model success criteria) is incorporated in the system fault tree model, 

weighting factors are assigned to each of various elements of the underlying model and in turn 

parametric (epistemic) uncertainty is accounted for via the component data. The aleatory 

uncertainty is accounted for by separating component-level basic events into two parts: one part 

represents an aleatory uncertainty characterized as the underlying probability model for 

component failure rate (with specific mean and standard deviation) and the other part represents 

an epistemic uncertainty characterized as the “applicability” of the underlying probability model. 



For the second part, we simply assign the subjective weight on the failure probability of the 

component. While the foregoing weighing factors (assigned to each element of different success 

criteria and different probability models of the component failure) may be viewed as the 

epistemic uncertainty, the underlying probability model itself of the component failure may be 

viewed as the aleatory uncertainty of the fault tree system. 

 

III. FORMAL TREAMENT OF MODEL UNCERTAINTIES 
 

On the other hand, we can think of a problem that includes the individual models and 

associated uncertainty about the models themselves (e.g., via different decompositions of the 

analysis model or submodel elements resulting in different predictions for parameters or 

variables addressed in the analysis model or different probability distribution models). Many of 

model uncertainties have been taken into account implicitly though an aggregation of expert 

opinions. The uncertainty distributions obtained in such way, however, do not give a full 

spectrum of uncertainties explicitly, but a mix of aleatory, epistemic, different hypotheses made 

in the modeling process. Instead, modeling uncertainties can be quantified by using the 

weighting information assigned to each model (e.g., self-weighting of experts on their own 

individual models of how good their work was or indirect weighting by the analyst to 

importance of each model).  The method also makes it possible to separate parametric and 

modeling uncertainty in their quantification process.  When the model uncertainty is treated 

explicitly as such, it does add another layer of uncertainty to the problem of interest. Regarding 

the modeling uncertainty, two different situations are often faced in real applications: one is 

when there is only one single model available and a variety of actual evidence for a given 

problem, and another is when there are multiple models, but there is no evidence available.  

 

III.1 When there is just a single predictive model, but evidence is available 

 

In order to describe the former situation, let’s consider a population of “circumstances” that 

lead to different actual values for each output calculated by a model. Then this “circumstance 

variability” may be characterized by aleatory uncertainty of the model, i.e., the particular 

circumstances of interest will be one of the many circumstances for the same model parameters. 

In order to express our uncertainty in the model predictions under the assumption of 

circumstance variability, Kaplan employs the Bayesian approach [15]. Whereas, Siu et al. 

[10,16], employ the ‘adjustment-factor approach’, and according to their approach the factor is 

defined as the ratio of the actual value over the calculated value by a deterministic reference 

model of the specific quantity. Then, the relative frequency of the values with the same 

calculated values of the specific quantity determines the likelihood the specific quantity will 

have the corresponding values.  As a result, the uncertainty of the adjustment-factor accounts 

for the uncertainty in the calculated value on the actual specific values. The uncertainty is due to 

the approximation made to develop a predictive model for the quantity.  In the case of a 

problem, they proposed an approach to estimate the distribution of the factor when evidence 

becomes available, by utilizing both aleatory uncertainties (e.g., lognormal distribution with 



parameters µ ,σ ) and epistemic uncertainties (e.g., probability density function over the 

vector of the parameters).  Then each value of this vector specifies one aleatory distribution for 

the adjustment factor. The average of these aleatory curves is used in the second stage as the 

epistemic distribution of the factor for a specified set of circumstances.   

 

III.2 When different predictive models are available, regardless of evidence 

 

When various models are available for the prediction of a given problem and each of them is 

base on the underlying assumptions, most PRA practitioners have accepted that it is appropriate 

to represent degrees of belief in different hypotheses using subjective probability.  While the 

combination of such degrees of belief to provide some overall measure of uncertainty is 

relatively straightforward, it has been argued that in many cases it may more informative to 

adopt an approach to uncertainty analysis which more explicitly displays the effects of different 

hypotheses while still associating some measure of the degree of belief in each hypothesis. 

When various models are available, there are two different approaches for quantifying impacts 

of those models to the final outcome: one is an integration of all modeling uncertainties into the 

overall uncertainty by analytically or statistically (i.e., integration of model uncertainties), and 

another a sensitivity analysis of different models (i.e., model sensitivity analysis). 

 

Integration of Model Uncertainties 

In many PSAs, the integration of modeling uncertainties into the overall uncertainty has 

indeed been less complete than that of parameter value uncertainty. This is fundamentally due to 

the lack of formal methodologies for the explicit treatment of modeling uncertainty. More 

specifically, there is no clear consensus on how to define modeling uncertainties (e.g., mutually 

exclusive and independent models), how to characterize quantitatively modeling uncertainties, 

and how to incorporate these uncertainties into the framework of quantitative. If we assume that 

modeling uncertainties are given in the form of submodels and they are probabilistically 

independent of each another, a possible approach is to utilize a statistical integration of 

modeling uncertainties through the analysis model.  In that case, the treatment of modeling 

uncertainties is similar in principle to uncertainty about the parameters of a given model [1,13-

14]. As a result, we can assign our degree of belief to each hypothesis (using relative weights or 

probabilities), and probability distributions for the model parameters can be evaluated 

conditionally upon the model being appropriate. To this end, we can propagate those 

uncertainties (both different submodels and parameter uncertainties) through the analysis model 

analytically or statistically. The Bayesian aggregation model [1-5,17] can analytically combine 

the effects of parameter uncertainties and model uncertainties by explicitly incorporating 

available evidence, but its practical implementation is not so simple and there is little guidance 

to the practitioners on the selection of parameter values for the aggregation model. The 

statistical approach is based on the Monte Carlo simulation. As long as both modeling and 

parametric uncertainties are involved, a practical implementation of the statistical approach 

must be based on a two-stage propagation of uncertainty [5,18,19] by which model uncertainty 

is taken in the first stage and parameter uncertainty in the second stage. By the approach, 



different types of uncertainties are kept separated in the analysis. The resulting uncertainty 

distributions are then summarized by a composite uncertainty distribution that folds all the 

modeling and related parameter uncertainties (one uncertainty curve). For instance, let’s a fault 

tree model for a system failure whose basic events are characterized by aleatory uncertainties. 

Also, we have a set of different submodels characterizing different possible states or occurrence 

criteria for some basic events and subjective probabilities are assigned to each of alternative 

submodels. For each combination of different submodels, the effects of aleatory uncertainties 

addressed in the basic events on the failure prediction of the system are then represented by 

conditional probabilities. The epistemic uncertainty curves of the system failure probability 

distributions can be obtained by statistically combining epistemic uncertainties addressed in the 

submodels and aleatory uncertainties addressed in the fault tree basic events.  

 

On the other hand, there may be two essential difficulties in implementing the model 

uncertainties by the integrated way.  The first is that there is no generally accepted, robust 

approach for handling quantitatively the impacts of the both types of uncertainties on the final 

outcome of the model because models do not always have a simple, intuitively appealing 

interpretation. The second is that it is necessary to make an appropriate selection of a 

combination of different model alternatives in a reasonable way and use that combination to get 

some insight into what the uncertainties are. If all possible combinations are taken, we can get 

some strange physical situations because some are non-physical, even though the computer 

codes would allow them.  This is, in part, because we do not really understand the processes 

that are occurring.  

 

Model Sensitivity Analysis 

Fundamentally, the aforementioned integration approach obscures the differences between the 

models under consideration and does not explain the reasons for the differences. When we want 

to know the impact of each model to the final results explicitly, we can utilize the model 

sensitivity analysis by which parametric uncertainty analysis is made conditionally upon each of 

the model elements (i.e., reference model element). In fact, there are many situations that model 

sensitivity analysis may be particularly helpful in several regards. For example, we often have 

situations that differences in probability estimates assigned to each of different models do not 

affect final results very much, in which case the approach has little influence on conclusions. 

Also, it may be important for the decision maker to appreciate the degree of disagreement 

among the different models and its effect on the results. If the degree of sensitivity is very high, 

the aforementioned integration approach should be avoided since they may tend to obscure 

critical differences of model.  In the aforementioned cases, it is preferable to retain separate 

models for each sensitivity analysis. 

 

When the input uncertainty distributions are not definitive due to scarcity of available data 

and varying experts’ opinions, on the other hand, the impact of the input distributional 

uncertainty (i.e., a kind of model uncertainties) on the output uncertainty must be assessed 

through a distributional sensitivity analysis.  Then, the distributional sensitivity analysis 



quantifies the sensitivity of output uncertainty distributions obtained by the analysis model to 

the uncertainty distributions assigned to the input parameters. The output distributional 

sensitivity analysis may be made through either the establishment of relationships between 

alternative input distributions and the corresponding output distributions. Two references 

[19,20] provide various methods to quantify the sensitivity of deterministic model uncertainties. 

 

IV. SUMMARY AND CONCLUSIONS 
 

In this paper, we have clarified various types of uncertainty sources that can be encountered in 

evaluating the uncertainty analysis of PSA model and addressed the underlying approaches for 

incorporating their impacts into the formal framework of uncertainty analysis. Associating with 

the uncertainty type, our particular concern was the distinction between aleatory and epistemic 

uncertainties. Although discussions in the literature are often unclear with respect to this 

distinction, most PSA practitioners seem to accept the fact that different sources of uncertainties 

must be kept separated in the uncertainty analysis. That is, all uncertainties of the same types 

should be mutually combined for the purposes of decision-making, e.g., combination of aleatory 

(epistemic) uncertainties in case of aleatory (epistemic) inputs. The selection of appropriate 

uncertainty types greatly depends on our knowledge about the prediction of the system behavior 

and available evidence. At a fundamental level, uncertainty is just uncertainty and conceptually 

there is only one type uncertainty that is due to our lack of knowledge, Nevertheless, the reason 

why we clarify them into more detailed types is related to important practical aspects of 

modeling for complex technological systems and as pointed in this paper we have clear 

advantages of the separation in real applications. That is, 

 

- In connection with risk analysis and communication it is common to divide uncertainty into 

at least two dimensions of aleatory and epistemic, and the formal separation of uncertainty 

sources allows to summarize the variability of a population of values of interest and to 

quantify how this summary is influenced by our lack of knowledge. When both aleatory and 

epistemic uncertainties are already mixed up in the course of the analysis without a clear 

separation, it would not be possible to identify the resulting combined effect of the 

uncertainties of either type. 

- The formal separation of uncertainty sources facilities decision-making under uncertainty, 

allows for proper propagation of uncertainties in the computational process, and leading to a 

more realistic quantitative assessment of the risk and reliability.  

- The foregoing two types of uncertainty would be input to different decisions. While the 

aleatory uncertainty is considered as a measure of inherent variability addressed in the 

estimated risk, improved knowledge of the epistemic quantities and the associated 

narrowing down of their ranges of uncertainty always do not mean changes of the risk. 

 

When the model uncertainty is treated explicitly, on the other hand, it does add another layer 

of uncertainty to the problem of interest.  Similarly with the parametric uncertainties, the 

essential steps for the analysis of modeling uncertainties are to find sources of modeling 



uncertainty in view of aleatory or epistemic uncertainties (i.e., discrete sets of possible models 

or hypotheses), to provide a proper method for quantitatively handling them, and finally to 

make a consistent interpretation of the uncertainty analysis results. Most of the existing 

applications deal with model uncertainty probabilistically by assigning subjective probabilities 

as a measure of the relative importance of one model over another model under consideration. 

This is due to the fact that the model uncertainty is a kind of epistemic uncertainties and the 

subjective probability is a means for expressing them. Then, the final result of model 

uncertainty analysis allows the presentation of uncertainties about alternative hypotheses of a 

given proposition by a family of uncertainty distributions. The dispersion in the spectrum 

uncertainty distributions obtained through their computational propagation represents the effects 

of model uncertainties in the presence of aleatory or the other epistemic uncertainties on the 

final predictions of the analysis model.  For some decision-makers, the final uncertainty 

distributions can be averaged over aleatory or epistemic space of uncertainty to give a single 

type of uncertainty. Even though the essential questions about how and whether probabilities for 

models can be interpreted and how to encode them may arise from the adoption of the 

aforementioned approach, it has clear advantages for purposes of a comprehensive decision-

making.  
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Figure 1. Characterization of Different Uncertainty Sources in Risk and Reliability Analysis 
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