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Abstract 

 

As an effort to resolve the whole-core flat flux assumption introduced in the formulation of 

the slowing down fixed source problem appearing in the application of the subgroup method 

for resonance treatment in heterogeneous systems, a new definition of the equivalence cross 

section is introduced which establishes equivalence between a heterogeneous and a 

homogeneous system in terms of equal sensitivity of reaction rate on the perturbation in the 

resonance cross section. The derivation to obtain the heterogeneous sensitivity coefficient is 

carried out through the use of the sensitivity theory to yield a fixed source problem which is 

different only in the right hand side source term from that of the conventional formulation. 

This derivation guarantees positive equivalence cross sections unlike the conventional 

formulation. The new approach is evaluated by employing an analytic Pn solver for a simple 

one dimensional two-region problem consisting of fuel and moderator. The results indicate 

that the new approach produces conditionally better results than the conventional formulation 

especially when the fluxes at the high energy range are greater in the moderator regions than 

in the fuel regions. . 

 

1. Introduction 

 

In multigroup calculations, the group averaged cross sections for the resonance energy 

regions should be properly generated a priori considering the resonance self shielding of the 

numerous resonances appearing in the broad resonance group. The resonance self-shielding 

is primarily influenced by the composition of the material and the temperature of the medium. 

It is, however, also affected by the surroundings characterized by the geometrical 

configuration and the contents of the slowing down materials. In order to properly estimate 

the resonance self shielding in heterogeneous systems, the subgroup method
1
 has been used 

in numerous lattice physics codes. 



In the application of the subgroup method in a heterogeneous system, the local flux 

corresponding to each specified subgroup level has to be determined to generate the local 

condensed cross section for the resonance group.
2
 Traditionally, the local flux has been 

determined employing the equivalence theorem which states that the local heterogeneous flux 

can be determined by the homogeneous flux vs. background cross section relation as long as 

the background cross section includes the equivalence cross section. The equivalence cross 

section that dictates the equivalence between a heterogeneous system and the corresponding 

homogeneous system is to be determined from the heterogeneous flux solution to a fixed 

source problem (FSP) in which the slowing down source from the upper energy groups is 

specified as the fixed source. The FSP describes neutron transport in a medium for neutrons 

belonging to certain energy ranges for which the cross section is the same as the 

prespecified resonance cross section level. 

In the HELIOS
2
 implementation of the subgroup method, it is assumed that the neutron flux 

in the upper energy groups is flat everywhere so that the slowing down source is represented 

just by the potential cross section of each region. This is an approximation introduced 

because the flux distribution for the upper energy groups can not be known before solving the 

entire problem. In reality, however, the upper energy group fluxes are not uniform so that the 

slowing down source obtained with flat flux would have some error. Consequently, the 

resulting flux distribution for the prespecified resonance level would have some error and so 

would the equivalence cross section. In addition to the inaccuracy of resulting equivalence 

cross section, there is a potential danger of negative equivalence cross section in case that 

the prescribed resonance level is very low whereas the potential cross section in the coolant 

region is very high. 

This paper addresses the two problems of the conventional formulation of the FSP by 

introducing a new definition of equivalence cross section. Equivalence between a 

heterogeneous system and a homogeneous system is forced such that a unit change in local 

cross section in the heterogeneous system would lead the same relative change in the 

reaction rate as in the homogeneous system. This definition involves a sensitivity coefficient 

which can be determined by solving another form of FSP as derived employing the sensitivity 

theory (ST) in Sections 2 and 3. In order to evaluate the ST based subgroup FSP formulation, 

a simplified one-dimensional two region problem which is a representative of the fuel-

moderator cell is examined in Section 4 employing analytic Pn transport solver. With this tool, 

the error of the conventional and ST approaches in the equivalence cross section are 

evaluated as a function of flux difference between the fuel and moderator region. As the 

result, the conditional superiority of the ST based approach is drawn considering the real 

environment. 

 

 



2. Equivalence Cross Section based on Sensitivity 

 

The benefit of the concept of equivalence cross section (XS) consists in possibility to 

replace a heterogeneous system by an equivalent homogeneous system in order to provide a 

simple and acceptably accurate way for calculation of resonance integral (RI). The crucial 

point of this approach resides in correct estimation of equivalence cross section eΣ . Owing to 

eΣ  we can get true estimation of flux dip in the vicinity of a resonance. Hence we can 
calculate the within-group spectrum for XS condensation. 

Equivalence in conventional sense is defined as equivalence with respect to the value of RI. 

The concept has no practical benefit in that there is no answer to the question about how to 

get the accurate value of the equivalence cross-section eΣ  and how to get it numerically in 
an efficient way compared to direct heterogeneous calculations. Numerous efforts were 

devoted to the methods for eΣ  calculation. Unfortunately, the conventional way urges us to 
make some approximations and assumptions during eΣ  derivation. Therefore we use 
alternative definition, very similar to the original one, but promising some benefits in 

accuracy of eΣ  due to canceling inherent approximations related to the standard approach. 
Our definition is based on clear, accurate and reasonable assumptions. It gives an answer 

to the question how to get eΣ  accurately and efficiently. We derive influence of moderator 
on the spectrum in the resonant area via sensitivity theory calculations. Therefore we can 

cancel conventional approximations during eΣ  calculation, namely, the flat source 
approximation, the assumption of a regular geometry, and the assumption of separability of 

space-energy variables within one-material region. 

Now we can give a formal definition of equivalence. Heterogeneous and homogeneous 

systems are equivalent if an increase in XS in the resonant material causes an equal flux dip 

under the same other conditions. In other terms we regard heterogeneous and homogeneous 

systems are equivalent if they have the equal sensitivity of reaction rate in the resonant 

material with respect to the perturbation XS in the resonant region. That means equal 

efficiency of one resonance. 

Consider two one-group problems with a given source of potential scattering. The first 

one corresponds to the homogeneous media with the reflective boundary condition (0-

dimensional problem) and the second one corresponds to the heterogeneous media with real 

boundary conditions. The basic equation for getting equivalence cross-section 

eΣ immediately follows from the definition: 

  hom hetβ β= , (1) 

where β is the dimensionless sensitivity coefficient which associates the relative change in 

reaction rate to the relative change in XS. The superscripts “hom” and “het” label 

homogeneous and homogeneous cases respectively. Calculation of 
hetβ is a standard problem 

of sensitivity theory calculations for real 2 or 3D geometries. Hence 
hetβ  takes into account 

real geometry and real material properties. The LHS coefficient 
homβ is a simple algebraic 

function of eΣ  and equation (1) can be easily solved for eΣ . 
Consider 0-dimensional problem and influence on the reaction rate due to the following 

factors: 1) direct influence of XS perturbation and 2) flux perturbation caused by XS 



perturbation. In case of no dilution,  

  ( )
( )

C
u

u
Φ =

Σ
,  (2) 

where C is a constant. Perturbation in the reaction rate, A = Σ ⋅ Φ  caused by δΣ  is given by  
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A
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δ δ δ δ δ
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 This means that the direct influence of XS perturbation will be completely compensated by the flux 

perturbation. Hence, 0
dA
d

=
Σ

. 

In case of diluted homogeneous media, assume ( )m mΦ = Φ Σ  in the spirit of subgroup 
approach, where mΣ  is the prespecified removal XS in the resonant region corresponding to 
Subgroup Number m. Let bΣ  be the unknown background cross-section. By putting 

0
1

mΣ =
Φ = , namely making the upper group unity, the reaction rate is given by   

  b
m m m m

m b

A
Σ

= Σ ⋅Φ = Σ ⋅
Σ + Σ

 (4) 

 Now define the dimensionless sensitivity coefficient β, as the coefficient which relates the 

relative change in the reaction rate  m

m

A
A

δ
 with the relative change m

m

δΣ
Σ

,  

  m m

m m

dA
A d

β
Σ

≡
Σ

 (5) 

Noting that  m am pλΣ = Σ + Σ  and m amd dΣ = Σ , where pλΣ  is the constant potential 
scattering XS, amΣ  is the absorption cross-section, λ is the Goldstein-Cohen intermediate 
resonance parameter, and eΣ  is the equivalence XS, we can derive:    

  hom m m m m e

m m m am m e

dA dA

A d A d
β

Σ Σ Σ
= = =

Σ Σ Σ + Σ
.  (6) 

Combining Eq. (1) and (6), we obtain the explicit expression for the background XS 

1

het

e m het

β
β

Σ = Σ
−
 with the assumption that 

hetβ is known from the sensitivity theory 

calculation for the heterogeneous system. Note that in case of infinite dilution we 

have
hom 1β = .   

 

3. Sensitivity Theory Formulation in Heterogeneous System  

 

Consider a one-group equation for a heterogeneous media with a given source of the 



potential scattering which reads: 

  H SΦ =   (7) 

where  

  ( , ) ( , )H r rΦ ≡ Ω∇Φ Ω + Σ ⋅ Φ Ω
r r

  (8) 

and S is the potential scattering source. Note that we make no assumption on the spatial 

dependence of the source. Let kχ δΣ  be the perturbation in one pin designated with index k. 
This consists of a delta function: 

  
1,  if Pin number k

( )
0,  if Pin number kk k

r
r

r
χ χ

∈
= =  ∉

r
r

r . (9) 

The equation for the perturbed flux then reads: 

  ( )( )kH Sχ δ δ+ Σ Φ + Φ =  (10) 

Hold on the first-order terms only and subtract Eq. (7) from Eq. (4). This yields: 

  1( )kHδ χ δ−Φ = − Σ⋅Φ  (11) 

The perturbation in the total reaction rate A over the whole media (or core) due to the 

perturbation kχ δΣ  is then given by 

  1, ,k kA Hδ χ δ χ χ δ−=< Φ Σ > − < Σ Φ Σ >  (12) 

where 

  
1,  if resonant region

( )
0,  if resonant region

r
r

r
χ χ

∈
= =  ∉

r
r

r  (13) 

and 

  
4

, ( , ) ( , )
coreV

f g f r f r drd
π

< >≡ Ω ⋅ Ω Ω∫ ∫
r r r

. (14) 

The first term in equation (12) represents the perturbation of reaction rate due to the XS 

change, while the second term expresses the influence of the flux dip on the reaction rate. 

Note that we used the term ,.χ< Σ >  in the second brackets because we need to know the 
total response of all pins. The reaction rate of pin number k is given by  

  ,k kA χ=< Σ Φ > . (15) 

From this, the heterogeneous sensitivity coefficient is derived as: 



  
1, ,

,
het k k k

k k

HdA
A d

χ δ χ χ δ
β

δ χ

−Σ < Φ Σ > − < Σ Φ Σ >Σ
≡ =

Σ Σ < Σ Φ >
 (16) 

We can carry δΣ  and Σ  outside the brackets, because they are constant within the 
integration area. Hence, it is simplified to 

 
1 1 1, , , ,

1 1
, , ,

het k k k k

k k k

H H Hχ χ χ χ χ χ χ
β

χ χ χ

+− − −< Φ > − < Σ Φ > < Σ Φ > < Σ Φ >
= = − = −

< Φ > < Φ > < Φ >
 (17) 

We can assume that one of two functions 
1H χ

+− Σ or Φ  is smooth within the pin (or within 
subregion of pin, if kχ  corresponds to subregion). Then we can carry the average value of Φ 
out the brackets and cancel Φ in the last ratio1. As far as the brackets give angular-integrated 

values, we will receive the identical value of the scalar product if we cancel sign of conjugate 

operator in the upper brackets.
3 

Finally we have 

  
1 ,

1
,1

het k

k

H χ χ
β

χ

−< Σ >
= −

< >
 (18) 

and  

  
1

het

e m het

β
β

Σ = Σ
−

 (19) 

Note that for the evaluation of the term in the numerator of Eq. (18), we have to solve  

  Σ=Φ χH   (20) 

instead of Eq. (7). This is the primary difference that distinguishes our approach from the 

conventional one. In addition to this difference we can make the following remarks on the new 

approach. 

 

Remark 1. Our approach gives an alternative way to realizing the “equivalence theorem” 

without invoking collision probabilities and related with collision probabilities assumption of 

flat flux approximation. 

 

Remark 2.  It is true 
1 1Hψ χ+ −≡ Σ <  (due to “leakage” and absorption in the moderator). 

Hence, 0 1het
kβ< < .  

 

Remark3. This approach has the same numerical requirements as the conventional approach. 

                                            

1 Or we can carry average value 
1 ,

,1
k

k

H χ χ
χ

−< Σ >
< >

 out the brackets. This yields the same resulting expression like 

in case of canceling flux. 



The only difference the source term is replaced by the fuel XS for the solution of the 

conjugate equation.  

1 1 1, , ,
1 1 1

,1 ,1 ,1
het k k k

k k k

H H Hχ χ χ χ χ χ
β

χ χ χ

+− − −< Σ > < Σ > < Σ >
= − = − = −

< > < > < >
 (21) 

Expression 
1

kH χ−
 gives distribution from the unit source located at pin (or flat source 

region) k. Expression 
1, kHχ χ−< Σ > gives the total collision rate in the fuel caused by unit 

source located in pin k, Expression 

1,
,1

k

k

Hχ χ
χ

−< Σ >
< >

 gives the fuel-to-fuel collision 

probability, and expression 

1,
1

,1
k

k

Hχ χ
χ

−< Σ >
−

< >
  gives the fuel-to-coolant collision probability.  

Hence formula (18) is completely consistent with the collision-probability formula
4
: 

0

01
eff tot
e

P

P

Σ
Σ =

−
        (22) 

Thus, our results are completely compatible with collision probability results, but our 

formula (17) was derived under less restrictive assumptions. This formula is more general in 

that no flat-flux approximation, no assumption about isotropic source and isotropic scattering 

are assumed. 

 

4. Evaluation of the Sensitivity Theory Approach 

 

Ideally, the equivalence cross section can be obtained exactly by solving the forward FSP 

Eq. (7) as long as the source is obtained with the space dependent fluxes of the upper energy 

groups. Suppose a certain definition of the degree of nonuniformity of the upper group fluxes. 

The conventional formulation of the FSP has no error in the equivalence XS only if the degree 

of nonuniformity is zero, namely if the flux distribution is really flat. The error of the 

conventional formulation would increase as the degree of nonuniformity increases. In case of 

the ST based formulation employing Eq. (20), however, the error in the equivalent XS will not 

be zero for the flat flux case since a different FSP equation is solved and also the different 

definition of the equivalent XS, Eq. (19), is used. In both formulations, once the equivalence 

XS is calculated for a heterogeneous configuration and given XS, this value will remain 

constant irrespective of the degree of nonuniformity since there is no place in any of the two 

formulations the actual upper group flux distribution is reflected.  

Noting that the error in the equivalence XS is not zero for the zero degree of 

nonuniformity in the ST formulation and the equivalence XS remains constant irrespective of 

the degree of nonuniformity, one can imagine that there would be a certain degree of 

nonuniformity for which the error becomes zero for the ST formulation. Therefore, near this 



degree of nonuniformity, the ST formulation would yield more accurate equivalence XS 

whereas the conventional formulation would be better near zero degree of nonuniformity. The 

superiority of one formulation to the other can not be determined unless the range of the 

degree of nonuniformity and the errors of both formulations are known. In this regard, a 

simple one-dimensional two-region problem consisting of fuel and moderator regions is 

examined below for which an analytic solution can be obtained using the Pn transport solution 

method for any degree of nonuniformity. In the following the Pn solution method realized by 

Mathematica programming is presented briefly and the test problem and results are given in 

the subsequent subsections. 

 

4.1 One-Dimensional One-Group Pn Solver 

 

Consider a two-region problem of which the left-hand side is for fuel and the other is for 

moderator. Write the 1D PN equation using the standard notations: 
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where  
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Excluding J from (23) yields: 
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Solve for (h)J
r
 the vector-matrix boundary-value problem.  
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It can be solved analytically in terms of matrix functions: 

  ( )h = 0 0 1 1 3J P Ö + P Ö + P f
rr r r

  (25) 

where h is the size of the region and 
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1
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Write the flux symmetry conditions at the left (labeled by L) and right (labeled by R) region in 

the two-region problem: 

  L1 0 L0 1 L3 LPÖ + P Ö + P f = 0
r rr r

  (26) 

  R0 1 R1 2 R3 RPÖ + P Ö + P f = 0
r rr r

  (27) 

Flux continuity condition for odd moments at interface is:  

  ( )−L0 0 L1 1 L3 L R2 2 R1 1 R3 RPÖ + P Ö + P f = P Ö + P Ö + P f
r rr r r r

  (28) 

where the fluxes 0 1 2,   ,   Φ Φ Φ
r r r

 correspond to the LHS boundary, fuel-moderator interface, RHS 

boundary respectively. 

Solve equations (23)-(28) for 0 1 2,   ,   Φ Φ Φ
r r r

 and substitute 0 1,   Φ Φ
r r
 into the vector-matrix 

boundary-value problem, formulated for the left (fuel) region. This yields the explicit 

expression for flux in the fuel region. The entire solution process can be easily implemented 

using the Mathematica package. 

 

4.2 Two-Region Problem 

 

The two-region problem is constructed with the parameters given in Table 1. In this 

problem, reflective boundary condition is imposed at both ends and a step change in the upper 



group flux level is considered. In the fuel region, the flux level is kept to 1.0 whereas the flux 

level of the moderator region varies from 0.8 to 1.2 to simulate various degree of 

nonuniformity.  

 

Table 1. Two-Region Problem Parameters 

Parameter Fuel Region Moderator Region 

Width, cm 1.0 1.0 

λΣp, 1/cm 0.42429 5x0.42429 

Σa, 1/cm 1.0 0.05 

Upper group flux 1.0 0.8~1.2 

 

The exact value of the equivalence XS based on the conventional definition is obtained by 

solving Eq. (7) with the source defined by the product of λΣp and the upper group flux. The 

upper group flux in the moderator region was varied by an increment of 0.05. For the value of 

1.0 in the moderator, the conventional equivalence XS is obtained. For the ST formulation, the 

source is defined only in the fuel region by Eq.. (20), and the resulting equivalent XS is 

calculated by Eq. (19). 

  Since the true value of the equivalence XS varies with the flux value at the moderator 

region which is a measure of degree of nonuniformity, the error of the ST and conventional 

equivalence XS, which is represented by only one value, changes. The errors of the two 

approaches are plotted in Figure 1 for the equivalence XS averaged over the peripheral 1/3 of 

the fuel region. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Comparison of Equivalence XS Error Behavior 
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  As shown in the figure, the error of the conventional approach is zero for the uniform flux 

case as expected whereas the error of ST approach is about +6%. As the flux level in the 

moderator region increases, the absolute magnitude of the error increases for both cases and 

it is not negligible. For example, the error is over 10% for the conventional case if the flux in 

the moderator is higher than 1.05 which is considered a small degree of nonuniformity. For 

the ST case, the error becomes zero when the flux in the moderator is 1.024. From the error 

behaviors, it can be concluded that the error of the ST case is smaller than the conventional 

case if the flux in the moderator is higher than 1.012. But it is worse vice versa.  

  Now the concern is if the flux in the moderator region is really higher than in the fuel 

region in reality in the slowing down energy range. In a consideration of an extreme case of 

no slowing down in the fuel region due to heavy mass, it would be obvious that the flux in the 

moderator region is higher in the slowing down energy region. In general, this will be true as 

can be confirmed from a real multigroup calculation for a pin cell shown in Figure 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Typical spectrum in the moderator and fuel regions 

 

This figure shows that the flux in the moderator region is higher in all the resonance 

energy regions. Therefore, it can be stated that the ST based approach would have less error 

than the conventional approach in real cases. 
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5. Conclusions 

 

A new definition of the equivalence cross section was introduced which establishes 

equivalence between a heterogeneous and a homogeneous system in terms of equal 

sensitivity of reaction rate on the perturbation in the resonance cross section. The derivation 

to obtain the heterogeneous sensitivity coefficient carried out through the use of the 

sensitivity theory yields a fixed source problem which is different only on the right hand side 

source term from that of the conventional formulation. The new definition of the equivalence 

cross section and the associated fixed source problem provides better estimates of the 

equivalence cross sections than the conventional method in most real heterogeneous systems 

in which the fluxes at the high energy range are greater in the moderator regions than in the 

fuel regions. In addition, the formulation guarantees positive escape cross sections which was 

not always true with the conventional formulation. 
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