RAW

A Study of Conditional RAW Importance Measure

, ,

150

RAW (Conditional RAW) Risk Achievement Worth (RAW) 가 RAW가 Conditional RAW Fussell-Vesely Conditional RAW . Defense In Depth , Defense In Depth Conditional RAW 가 unavailability Conditional RAW Conditional Fussell-Vesely RAW **RAW**

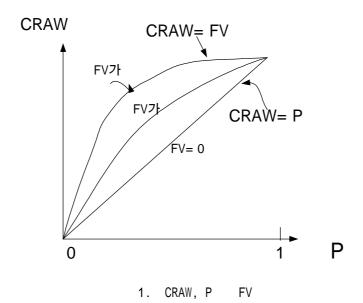
Abstract

In this paper, Conditional RAW, an extened Risk Achievement Worth (RAW), was introduced, and its characteristics were studied to improve the problem caused by the conventional RAW in the Maintenance Rule application. If Defense In Depth (DID) of a Structures, Systems, Component(SSC) is good , then Conditional RAW approaches FV value, and if DID of a SSC is poor , then Conditional RAW approaches the unavailability of the SSC. As a new importance measure, Conditional RAW can be used to find the risk significant SSCs as the combination of FV and RAW values are used .

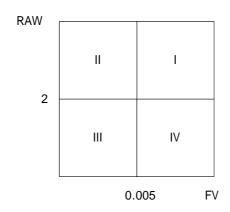
1.

					(Risk Ir	nformed Reg	ulation &
Applications: RIR&	(A)					/	/
(Structures, Systems	s, Components:	SSC)	SSC		SSC		
SSC			,	Fussell-Ve	sely (FV)	Risk Acl	ievement
Worth (RAW)							
SSC RAW	SSC가			가 ,			
, RAW	SSC	Defen	se In Depth			,	SSC가
	,		-			, RAW	
SSC가	,	,				. ,	
SSC	, RAW가	,	SSC가				,
SSC Defense	In Depth 가				, SSC	Availabilit	y가
(가) Defense	In Depth가	, RAV	V가	,
가	SSC가		SSC				
. (, C	Out of service(O	OS)	,				RAW가
.)							

```
RAW
     RAW
             SSC가
                                                                   RAW가
FV
                                                             RAW FV
                                     RAW
                   가
2.
       RAW
        (Core Damage Frequency : CDF)
        (MCS)
                                                    Basic Event
        SSC unavailability . ( unavailability
                                      unavailability,
unavailability,
                                   (1)
                                                  SSC unavailability P
Unreliability .) CDF
     CDF = a \times P + b
                                        (1)
     , aP P
          [1]. , FV
                         (2) ,
                                        RAW
                                               (3)
                                                             [1].
     FV = aP/CDF = aP/(aP+b)
                                        (2)
     RAW = (a+b) / (aP + b)
                                        (3)
Conditional RAW (CRAW)
                                      SSC
          RAW
                 가
                                      가
                                             SSC가
                                가
                                                 SSC
                         가
                RAW
RAW
               가
         RAW
                                         RAW (Conditional RAW:CRAW)
SSC i Basic Event i RAW (Conditional RAW: CRAW)
     CRAW_i = RAW_i * P_i
                                   (4)
     SSC i,j Basic Event i, j CRAW
     CRAW_{i,j} = RAW_{i,j} * P_i * P_j
                                       (5)
      , , Basic Event i, j
                                                    . i,j가
     CRAW_{i,j} = Max[(RAW_i * P_i), (RAW_j * P_j)]  (6)
            SSC 1,2,..k Basic Event 1,2,..k
        k
                                                 CRAW
```


, RAW가

RAW


```
CRAW_{1,2,..k} = RAW_{1,2,..k} * P_1 * P_2 ... * P_k (7)
       , , Basic Event 1, 2, .. k
                                                               CRAW
                     (6)
                                                                     B가 ,
                                 Α
                     B가
                               RAW
             CRAW
                                                                       P(A) 0.01,
         Α
                                RAW
                                                    CRAW
P(B)
      0.001
               가
                                                                 0.01 0.002가
                  , B RAW가
RAW
                                         CRAW
                                                                 Α
        CRAW
                                                SSC
                                                                                RCM
       I<sup>™</sup> (Weld Inspection Importance Measure)[2], [3]
CRAW
I_i^W
                                            [3].
      I_i^W = P_i I_i^B
                                                (8)
                                            , I<sub>i</sub><sup>B</sup> Birnbaum
            , P<sub>i</sub> i
CRAW
                                       [1]. (Defense In Depth: DID) 가
, DID a << b .
  (3)
           RAW
                       a >> b
           a가
  (4)
         DID가
                  , \quad , \quad a >> b \qquad ,
      CRAW = RAW * P = (a+b)P / (aP + b) \cong aP / (aP + b) = FV (9)
  (4) DID7 , , a << b ,
    CRAW = RAW * P = (a+b)P / (aP + b) \cong bP / b = P (10)
```

1 FV7 CRAW = P , FV7 CRAW = FV . FV7 0

RAW 1

 $\begin{tabular}{lll} Risk Significant SSC & RAW > 2 & FV > 0.005 \\ . & , & 2 & I & SSC & Risk Significant SSC & , & III \\ Non-Risk Significant SSC & . & . & . \\ \end{tabular}$

2 FV RAW

2 CRAW 가 .

```
. CRAW >0.005
                                                           CRAW \cong P
( , P > 0.5 * CRAW) CRAW Risk Significant SSC
      (11) [4] CRAW
     RAW = 1 + [(1-P)/P]^* FV (11)
   RAW >2, FV > 0.005 Risk Significant SSC
                                                    , (11) ,
     2 < RAW
     2 < 1 + [(1-P)/P]* FV
     P/(1-P) < FV
        0.005 < FV
     0.005 \ge P/(1-P),
    , ~0.005≥ P
                                (12)
    FV > 0.005 , (11)
CRAW= P+(1-P)*FV
     CRAW > 0.005 + (1-0.005)* 0.005
     CRAW > 0.01
                               (13)
                      SSC가
                                2 RAW >2, FV > 0.005
                                                          Risk Significant
 (12) (13)
SSC
                                                                 SSC
                       (12)
                                (13)
                                           2 l
               . II, III, IV
                                       SSC
     , RCM, Option 2 CRAW
                                            RAW
                                                          RAW
                                      . , CRAW
      RAW Unavailability P )
(
                 3,4 PSA
                                                   CRAW
                 1 1, 2 event CRAW > 0.01
                                                 P < 0.005
                 FV RAW가 0.005 2
                                                   . , 3
                                                              event CRAW
> 0.01 P > 0.005 2 I
                                                   . (
CRAW > 0.005
            CRAW \cong P
                             2 I
                                                    .)
                          1. RAW CRAW
                                  F۷
         EVENT
                       MEAN
                                            RAW
                                                      CRAW
  1
      HSMPW00102
                   8.90E-05
                               0.0323
                                        364.362
                                                    3.24E-02
  2
      AFCVW104849
                   2.08E-06
                               0.0313
                                        15069.8678
                                                    3.13E-02
      EGDGS01B
                   1.40E-02
                               0.0051
                                        1.0187
                                                    1.42E-02
  3
```

Option 2

2.

	F-V	RAW
Valve 'A' Fails to Open	0.002	1.7
Valve 'A' Fails to Remain Closed	0.00002	1.1
Valve 'A'In Maintenance	0.0035	1.7
Common Cause Failure of Valves 'A' & 'B'	0.004	n/a
	0.00952	1.7

3.

- 1. I.B. Wall, D.H. Worledge, "Some Perspectives on Risk Importance Measure", PSA '96, Utah, U.S.A, 1996
- 2. Truong V. Vo, et. al., "Probabilistic Risk Assessment Based Guidance For Piping In-Service Inspection", Nuclear Technology, Vol. 88, Oct, 1989
- 3. R. Fullwood, R. Hall, "Probabilistic Risk Assessment in the Nuclear Power Industry", 1988, Pergamon Press
- 4. S. Martorell, et.al., "Safety-related equipment prioritization for reliability centered maintenance purposes based on a plant specific level 1 PSA", Reliability Eng. And System Safety, Vol 52, 1996
- 5. NEI 00-04, "Industry Guideline for Risk-Informed Categorization and Treatment of Structures, Systems, and Components, Draft, March, 2000