2002

MCNP4C

A Library for MCNP4C to Handle Effects of Self-Shielding in Unresolved Resonance Energy Range

, , 150

MCNP4C	(unresolved resol	nance, UR)		(probability table)
			, NJOY	PURR	UR
	MC	NP4C	ACE		KNE68
ENDF/B-VI re	elease 8	NJOY99.67			
Los Alamos National	Laborator	y (LANL)			

Abstract

A continuous-energy neutron data library, called KNE68, has been generated for MCNP4C. The KNE68 library contains ACE format data processed from ENDF/B-VI release 8 using the latest NJOY99.67 code. The continuous-energy Monte Carlo code MCNP4C supports the use of probability tables for handling the effects of self-shielding in the unresolved resonance energy range. These tables were generated using the PURR module of NJOY and merged into the new library. The validation process for KNE68 has been performed for a suite of criticality benchmarks established for validating nuclear data by Los Alamos National Laboratory.

1.

MCNP (A General Monte Carlo N-Particle Transport Code)¹

가	가	. MCNP		ENDF/B-VI
release 2	ENDF60	² , ENDF/B-VI	release 4	
UR	(unresolved resonance probability	tables)	URES	³ , ENDF60

		가 가 END	F6DN ⁴	
,	1999 END	F/B-VI release 5	300K, 600K	, 900K ACE (A
Compact ENDF)		MCLIB-E6 ⁵ フト		
LANL	ENDF66	MCNP4C		2002
			.6	ENDF/B-VI
release 6	173	ACE		, NJOY99.50 ⁷
(NJOY99.6	3)		
293.6K	, UR		3000)К.,
35	77K			
LANL	MCNP		broadening/thinning	5
		Doppler bro	oadening	. 293.6K
broadening/thinnin	g		. , l	UR
	293.6K		bi	roadening
			3000K	가 가 .
	ENDF66			ENDF/B-VI release 8
NJOY99.67		MCNP4C	ACE	
KNE68 (<u>K</u> AERI	<u>N</u> DL <u>E</u> NDF/B-	<u>VI</u> Release <u>8</u>)		
LANL			⁸ 53	
		, KNE68		
가 UR				
2.				
ENDF/B-	VI release 8	NJOY99.67	, UR	
(self shielding)		UR		MCNP4C
		,		LANL
4	53	가	, 53	1
. 2			가	NJOY
2.1. ENDF				
	71	1 U 1	00 Ec 252	320
	×1	1-11-1	10^{-5} eV 20	527 MeV 150 MeV
		,		
		•	IVICINP4C	

2001 ENDF 가 ENDF/B-VI release 8 가 ENDF/B-VI 2005 release • ENDF/B-VII 2.2. NJOY NJOY LANL , ENDF 가 NJOY99.67 77K, 293.6K, 3000K ACE , PURR PENDF UR 가 가 ZAID identifier . 293.6K ".80c", 77K ".81c", 3000K ".82c" ZAID identifier . 53 가 UR KNE68 15 2 UR 10 keV ~ 149.03 keV 기 U-238 UR , U-238 UR W-182, W-184, W-186, U-234, U-236 UR . U-238 U-234 U-236 . (Group 9) 3. KNE68 (validation) LANL UR KNE68 ENDF60 3.1. LANL MCNP ICSBEP (International Criticality Safety Benchmark Evaluation Project)⁹ CSEWG (Cross Section Evaluation Working Group) specifications¹⁰ , 가 (reflector) .

91

3

3.2.

Group 2: Solution assemblies
Group 3: Water-reflected metal assemblies
Group 4: Polyethylene-reflected assemblies
Group 5: Beryllium- and beryllium oxide-reflected assemblies
Group 6: Graphite-reflected assemblies
Group 7: Aluminum-reflected assemblies
Group 8: Steel- and nickel-reflected assemblies
Group 9: Tungsten-reflected assemblies
Group 10: Thorium-reflected assemblies
Group 11: Normal uranium-reflected assemblies
Group 12: Highly enriched uranium-reflected assemblies
Group 13: Other assemblies
, , Ref. 8

.

Group 1: Bare metal assemblies

k_{eff} HP C-3600 , MCNP version 4C 가 3 ~ 14 12 Group 5 ENDF60 KNE68 . . KNE68 , MCNP UR UR UR Group 5 KNE68 (UR MCNP 가) . . Be-9 Be-9 NJOY , MCNP 가 MCNP consistency . UR KNE68 , Group 11 ENDF60 bigten27 | 0.0029 Äk 가 ,

KNE68

.

ENDF 가	NJOY	ENDF60	
UR		KN	E68
UR 가			Group 9
, 가	Group 8	0.0023 Äk	
	UR		가
,	Group 9 u	umet3h ~ umet3k 47	UR
UR	가		
	(HEU)	WC (Tungsten Carbide)	가
, WC	1.9" 6.5"	· 가	
. 가	umet3h	フト 0.00	011 Äk ,
가		umet3i, umet3j, umet3k	0.0093
Äk, 0.0203 Äk, 0.0255 Äk		· ,	UR
가		UR	가
UR			. ,
UR		가	
			$\frac{\cdot^2}{\cdot}$
¹¹ フト	. 15 KNI	E68 ENDF60	MCNP
\div^2 difference		\div^2 difference	,
UR		ENDF60 KNE68	
\div^2 difference		, KNE68 ENI	$ \frac{1}{2} $
difference	. 가	,	\div^2 difference
KNE68 0.000	847 ENDF60	0.000893	
, KNE68 MCNP	가		
,	LANL		
KNE68	フト ENDF60		
·			
15 KNE68	UR		
\div^2 difference			

Group 9 7^{1} \div^{2} difference., Group 9 \div^{2} differenceKNE68..., UR 7^{1} Group 9

 KNE68
 MCNP4C
 가
 , ENDF60

 가
 .

J.M. Campbell UR MCNP4C ENDF66

. , Group 9 WC umet3h ~ umet3k

. ENDF66 , umet3h -0.0013 Äk k_{eff} , umet3k 0.0033 Äk k_{eff} 7∤ . , umet3k $k_{eff} =$. , KNE68 4가 1.0119 k_{eff} 가 가 0.0255 Äk . umet3k $k_{\rm eff} = 1.0350$ ENDF66 ., UR KNE68 ENDF66 .

,

.

4.

ENDF/B-VI release 8 NJOY99.67 MCNP4C ACE KNE68 . UR 7 , UR . LANL 53 .

, UR 가 가 UR UR UR 가 MCNP ENDF60 MCNP . KNE68 \div^2 difference , , Group 9 \div^2 difference ENDF60 MCNP KNE68 .

LANL Group 5 Be-9 MCNP

"

53

가

- ・ フド"
- J.F. Briesmeister, "MCNP–A General Monte Carlo N-Particle Transport Code, Version 4C," LA-13709-M, Los Alamos National Laboratory (2000).
- 2. J.S. Hendricks, S.C. Frankle, and J.D. Court, "ENDF/B-VI Data for MCNP," LA-12891, Los Alamos National Laboratory (1994).
- 3. R.C. Little and R.E. MacFarlane, "ENDF/B-VI Neutron Library for MCNP with Probability Tables," LA-UR-98-5718, Los Alamos National Laboratory (1998).
- 4. C.J. Werner, "New Data Library for MCNP Delayed Neutron Capability," XCI:CJW-99-25(U), Los Alamos memorandum, Los Alamos National Laboratory (1999).
- 5. , "MCNP ," NDL-19/99, 7, ,

(1999).

- J.M. Campbell, S.C. Frankle, and R.C. Little, "ENDF66: A Continuous-Energy Neutron Data Library for MCNP4C," 12th Biennial RPSD Topical Meeting, Santa Fe, NM (2002).
- R.E. MacFarlane and D.W. Muir, "The NJOY Nuclear Data Processing System, Version 91," LA-12740-M, Los Alamos National Laboratory (1994).
- 8. S.C. Frankle, "A Suite of Criticality Benchmarks for Validating Nuclear Data," LA-13594, Los Alamos National Laboratory (1999).
- 9. "International Handbook of Evaluated Criticality Safety Benchmark Experiments," NEA Nuclear Science Committee, NEA/NSC/DOC(95)03 (2001).
- 10. "Cross Section Evaluation Working Group Benchmark Specifications," ENDF-202, BNL19302, Brookhaven National Laboratory (1991).
- 11. W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P Flannery, *Numerical Recipes in FORTRAN: The Art of Scientific Computing Second Edition*, Cambridge University Press, New York, 1992.

No.	Element	Ζ	А	MAT
1	Н	1	001	125
2			002	128
3	Be	4	009	425
4	В	5	010	525
5			011	528
6	С	6	000	600
7	Ν	7	014	725
8	0	8	016	825
9	Na	11	023	1125
10	Mg	12	000	1200
11	Al	13	027	1325
12	Si	14	000	1400
13	Р	15	031	1525
14	S	16	032	1625
15	Ca	20	000	2000
16	Ti	22	000	2200
17	V	23	000	2300
18	Cr	24	050	2425
19			052	2431
20			053	2434
21			054	2437
22	Mn	25	055	2525
23	Fe	26	054	2625
24			056	2631
25			057	2634
26			058	2637
27	Ni	28	058	2825
28			060	2831
29			061	2834
30			062	2837
31			064	2843

Table 1. List of Nuclides for Criticality Benchmarks of LANL

No.	Element	Ζ	А	MAT
32	Cu	29	063	2925
33			065	2931
34	Ga	31	000	3100
35	Zr	40	000	4000
36	Мо	42	000	4200
37	Cd	48	000	4800
38	W	74	182	7431
39			183	7434
40			184	7437
41			186	7443
42	Th	90	232	9040
43	U	92	233	9222
44			234	9225
45			235	9228
46			236	9231
47			238	9237
48	Np	93	237	9346
49	Pu	94	239	9437
50			240	9440
51			241	9443
52			242	9446
53	Am	95	241	9543

	r		-
Element	Lower Bound (MeV)	Upper Bound (MeV)	Energy Span (MeV)
W-182	4.5000E-03	1.0000E-01	9.5500E-02
W-183	7.6500E-04	4.5000E-02	4.4235E-02
W-184	2.6500E-03	1.0000E-01	9.7350E-02
W-186	3.2000E-03	1.0000E-01	9.6800E-02
Th-232	4.0000E-03	5.0000E-02	4.6000E-02
U-233	6.0000E-05	1.0000E-02	9.9400E-03
U-234	1.5000E-03	1.0000E-01	9.8500E-02
U-235	2.2500E-03	2.5000E-02	2.2750E-02
U-236	1.5000E-03	1.0000E-01	9.8500E-02
U-238	1.0000E-02	1.4903E-01	1.3903E-01
Pu-239	2.5000E-03	3.0000E-02	2.7500E-02
Pu-240	5.7000E-03	4.0000E-02	3.4300E-02
Pu-241	3.0000E-04	4.0200E-02	3.9900E-02
Pu-242	9.8600E-04	1.0000E-02	9.0140E-03
Am-241	1.5000E-04	3.0000E-02	2.9850E-02

Table 2. Unresolved Resonance Energy Range in KNE68 Library

								· •		
No.	Filename	Benchmark $k_{eff}(A)$	STD	ENDF60 (B)	STD	KNE68 with PT (C)	STD	KNE68 w/o PT (D)	STD	Äk (C-D)
1	23umt1	1.0000	± 0.0010	0.9929	± 0.0006	0.9930	± 0.0006	0.9921	± 0.0006	0.0008
2	ieumt3	1.0000	± 0.0017	1.0001	± 0.0006	0.9982	± 0.0006	0.9988	± 0.0006	-0.0006
3	umet1ss	1.0000	± 0.0010	0.9962	± 0.0006	0.9964	± 0.0006	0.9962	± 0.0006	0.0002
4	umet1ns	1.0000	± 0.0010	0.9968	± 0.0006	0.9956	± 0.0006	0.9967	± 0.0006	-0.0010
5	umet8	0.9989	± 0.0016	0.9922	± 0.0006	0.9925	± 0.0006	0.9916	± 0.0006	0.0009
6	umet15	0.9996	± 0.0017	0.9916	± 0.0006	0.9911	± 0.0007	0.9915	± 0.0006	-0.0004
7	umet18	1.0000	± 0.0016	0.9964	± 0.0006	0.9963	± 0.0006	0.9970	± 0.0006	-0.0007
8	pumet1	1.0000	± 0.0020	0.9977	± 0.0006	0.9992	± 0.0006	0.9974	± 0.0006	0.0018
9	pumet2	1.0000	± 0.0020	0.9981	± 0.0005	0.9981	± 0.0006	0.9986	± 0.0006	-0.0005
10	pumet22	1.0000	± 0.0021	0.9973	± 0.0006	0.9967	± 0.0005	0.9955	± 0.0005	0.0012

Table 3. Criticality Benchmark Results for Bare Metal Assemblies (Group 1)

Table 4. Criticality Benchmark Results for Solution Assemblies (Group 2)

No	Filename	Benchmark	STD	ENDF60	STD	KNE68	STD	KNE68	STD	Äk
140.	Thename	k _{eff} (A)	51D	(B)	51D	with PT (C)	51D	w/o PT (D)	51D	(C-D)
1	23usl1a	1.0000	± 0.0031	0.9967	± 0.0004	0.9973	± 0.0004	0.9989	± 0.0004	-0.0015
2	23usl1b	1.0005	± 0.0033	0.9966	± 0.0004	0.9978	± 0.0004	0.9984	± 0.0004	-0.0007
3	23usl1c	1.0006	± 0.0033	0.9969	± 0.0004	0.9973	± 0.0004	0.9975	± 0.0004	-0.0003
4	23usl1d	0.9998	± 0.0033	0.9962	± 0.0004	0.9981	± 0.0004	0.9980	± 0.0004	0.0001
5	23usl1e	0.9999	± 0.0033	0.9956	± 0.0004	0.9971	± 0.0004	0.9965	± 0.0004	0.0006
6	23us18	1.0006	± 0.0029	0.9954	± 0.0003	0.9968	± 0.0003	0.9966	± 0.0003	0.0002
7	usol13a	1.0012	± 0.0026	0.9975	± 0.0004	0.9990	± 0.0004	0.9982	± 0.0004	0.0008
8	usol13b	1.0007	± 0.0036	0.9964	± 0.0004	0.9976	± 0.0004	0.9982	± 0.0004	-0.0006
9	usol13c	1.0009	± 0.0036	0.9929	± 0.0004	0.9934	± 0.0004	0.9940	± 0.0004	-0.0006
10	usol13d	1.0003	± 0.0036	0.9957	± 0.0004	0.9946	± 0.0004	0.9952	± 0.0004	-0.0005
11	usol32	1.0015	± 0.0026	0.9966	± 0.0002	0.9988	± 0.0003	0.9987	± 0.0003	0.0001
12	pnl1	1.0000		1.0062	± 0.0006	1.0059	± 0.0006	1.0076	± 0.0006	-0.0017
13	pnl6	1.0000		1.0020	± 0.0007	1.0014	± 0.0007	0.9997	± 0.0007	0.0017
14	pusl11a	1.0000	± 0.0052	0.9948	± 0.0005	0.9945	± 0.0005	0.9952	± 0.0005	-0.0007
15	pusl11b	1.0000	± 0.0052	1.0008	± 0.0006	1.0008	± 0.0006	1.0012	± 0.0005	-0.0004
16	pusl11c	1.0000	± 0.0052	1.0045	± 0.0006	1.0049	± 0.0006	1.0053	± 0.0006	-0.0003
17	pusl11d	1.0000	± 0.0052	1.0085	± 0.0006	1.0087	± 0.0006	1.0080	± 0.0006	0.0008

Table 5. Criticality Benchmark Results for Water-Reflected Metal Assemblies (Group 3)

No.	Filename	Benchmark $k_{eff}(A)$	STD	ENDF60 (B)	STD	KNE68 with PT (C)	STD	KNE68 w/o PT (D)	STD	Äk (C-D)
1	umet4a	1.0020		1.0006	± 0.0008	0.9997	± 0.0007	1.0006	± 0.0007	-0.0009
2	umet4b	1.0003	± 0.0005	0.9972	± 0.0007	0.9949	± 0.0008	0.9959	± 0.0007	-0.0010
3	pumet11	1.0000	± 0.0010	0.9977	± 0.0007	0.9975	± 0.0007	0.9964	± 0.0008	0.0011

Table 6. Criticality Benchmark	Results for Polyethylene-Reflected	Assemblies (Group 4)
2	5 5	

No.	Filename	Benchmark $k_{eff}(A)$	STD	ENDF60 (B)	STD	KNE68 with PT (C)	STD	KNE68 w/o PT (D)	STD	Äk (C-D)
1	umet11	1.0000	± 0.0010	0.9973	± 0.0008	0.9956	± 0.0007	0.9946	± 0.0007	0.0010
2	umet20	1.0000	± 0.0030	0.9973	± 0.0006	0.9975	± 0.0006	0.9982	± 0.0007	-0.0007
3	pumet24	1.0000	± 0.0020	0.9994	± 0.0007	0.9995	± 0.0007	1.0015	± 0.0007	-0.0020

			2			1			1 /	
No.	Filename	Benchmark $k_{\text{eff}}(A)$	STD	ENDF60 (B)	STD	KNE68 with PT (C)	STD	KNE68 w/o PT (D)	STD	Äk (C-D)
				(2)				(J) (J)		(0.2)
1	ieumt4	1.0000	± 0.0030	1.0051	± 0.0006	1.0028	± 0.0006	1.0037	± 0.0006	-0.0009
2	umet19	1.0000	± 0.0030	1.0024	± 0.0006	1.0035	± 0.0006	1.0032	± 0.0006	0.0003
3	pumet23	1.0000	± 0.0020	0.9983	± 0.0006	0.9990	± 0.0006	0.9992	± 0.0006	-0.0002

Table 7. Criticality Benchmark Results for Graphite-Reflected Assemblies (Group 6)

 Table 8. Criticality Benchmark Results for Aluminum-Reflected Assemblies (Group 7)

No.	Filename	Benchmark k _{eff} (A)	STD	ENDF60 (B)	STD	KNE68 with PT (C)	STD	KNE68 w/o PT (D)	STD	Äk (C-D)
1	ieumt6	1.0000	± 0.0023	0.9918	± 0.0006	0.9908	± 0.0006	0.9911	± 0.0006	-0.0003
2	umet12	0.9992	± 0.0018	0.9935	± 0.0006	0.9946	± 0.0006	0.9933	± 0.0006	0.0013
3	umet22	1.0000	± 0.0021	0.9916	± 0.0006	0.9923	± 0.0006	0.9934	± 0.0006	-0.0011
4	pumet9	1.0000	± 0.0027	1.0020	± 0.0006	1.0022	± 0.0006	1.0023	± 0.0006	-0.0001

Table 9. Criticality Benchmark Results for Steel- and Nickel-Reflected Assemblies (Group 8)

No.	Filename	Benchmark $k_{eff}(A)$	STD	ENDF60 (B)	STD	KNE68 with PT (C)	STD	KNE68 w/o PT (D)	STD	Äk (C-D)
1	ieumt5	1.0000	± 0.0021	0.9995	± 0.0006	0.9985	± 0.0006	0.9980	± 0.0006	0.0005
2	umet13	0.9990	± 0.0015	0.9950	± 0.0006	0.9940	± 0.0005	0.9943	± 0.0006	-0.0003
3	umet21	1.0000	± 0.0026	0.9946	± 0.0006	0.9943	± 0.0006	0.9944	± 0.0006	-0.0002
4	pumet25	1.0000	± 0.0020	0.9965	± 0.0006	0.9974	± 0.0006	0.9951	± 0.0006	0.0023
5	pumet26	1.0000	± 0.0024	0.9978	± 0.0006	0.9971	± 0.0006	0.9973	± 0.0006	-0.0002
6	umet31	1.0000	± 0.0030	1.0044	± 0.0006	1.0058	± 0.0006	1.0035	± 0.0007	0.0023

Table 10. Criticality Benchmark Results for Tungsten-Reflected Assemblies (Group 9)

No.	Filename	Benchmark k _{eff} (A)	STD	ENDF60 (B)	STD	KNE68 with PT (C)	STD	KNE68 w/o PT (D)	STD	Äk (C-D)
1	23umt4a	1.0000	± 0.0007	1.0030	± 0.0006	1.0030	± 0.0006	1.0024	± 0.0006	0.0006
2	23umt4b	1.0000	± 0.0008	1.0056	± 0.0006	1.0070	± 0.0007	1.0047	± 0.0006	0.0023
3	umet3h	1.0000	± 0.0050	1.0061	± 0.0006	1.0081	± 0.0006	1.0070	± 0.0006	0.0011
4	umet3i	1.0000	± 0.0050	1.0069	± 0.0006	1.0155	± 0.0006	1.0062	± 0.0006	0.0093
5	umet3j	1.0000	± 0.0050	1.0069	± 0.0006	1.0276	± 0.0006	1.0073	± 0.0007	0.0203
6	umet3k	1.0000	± 0.0050	1.0088	± 0.0006	1.0350	± 0.0006	1.0095	± 0.0006	0.0255
7	pumet5	1.0000	± 0.0013	1.0094	± 0.0006	1.0101	± 0.0006	1.0086	± 0.0006	0.0015

No.	Filename	Benchmark $k_{eff}(A)$	STD	ENDF60 (B)	STD	KNE68 with PT (C)	STD	KNE68 w/o PT (D)	STD	Äk (C-D)
1	pumet8a	1.0000	± 0.0030	1.0061	± 0.0006	1.0055	± 0.0006	1.0058	± 0.0006	-0.0003
2	pumet8b	1.0000	± 0.0006	1.0058	± 0.0006	1.0069	± 0.0006	1.0057	± 0.0006	0.0013

			2						` 1	,
No.	Filename	$\begin{array}{c} \text{Benchmark} \\ k_{\text{eff}}\left(A\right) \end{array}$	STD	ENDF60 (B)	STD	KNE68 with PT (C)	STD	KNE68 w/o PT (D)	STD	Äk (C-D)
1	23umt3a	1.0000	± 0.0010	0.9969	± 0.0006	0.9969	± 0.0006	0.9969	± 0.0006	0.0000
2	23umt3b	1.0000	± 0.0010	0.9984	± 0.0006	0.9986	± 0.0007	0.9972	± 0.0006	0.0014
3	23umt6	1.0000	± 0.0014	1.0001	± 0.0007	1.0000	± 0.0007	0.9996	± 0.0007	0.0004
4	flat23	1.0000	± 0.0010	1.0018	± 0.0007	1.0015	± 0.0007	1.0023	± 0.0006	-0.0008
5	ieumt2	1.0000	± 0.0030	1.0038	± 0.0006	1.0015	± 0.0005	1.0020	± 0.0006	-0.0005
6	umet3a	1.0000	± 0.0050	0.9927	± 0.0006	0.9928	± 0.0006	0.9918	± 0.0006	0.0011
7	umet3b	1.0000	± 0.0050	0.9926	± 0.0006	0.9926	± 0.0006	0.9915	± 0.0006	0.0011
8	umet3c	1.0000	± 0.0050	0.9986	± 0.0006	0.9969	± 0.0006	0.9985	± 0.0006	-0.0016
9	umet3d	1.0000	± 0.0030	0.9973	± 0.0007	0.9962	± 0.0007	0.9961	± 0.0006	0.0001
10	umet3e	1.0000	± 0.0030	1.0015	± 0.0006	1.0000	± 0.0006	0.9999	± 0.0006	0.0001
11	umet3f	1.0000	± 0.0030	1.0020	± 0.0006	1.0000	± 0.0006	1.0014	± 0.0006	-0.0014
12	umet3g	1.0000	± 0.0030	1.0030	± 0.0006	1.0010	± 0.0006	1.0021	± 0.0007	-0.0010
13	umet14	0.9989	± 0.0017	0.9958	± 0.0006	0.9946	± 0.0006	0.9958	± 0.0006	-0.0012
14	umet28	1.0000	± 0.0030	1.0024	± 0.0006	1.0004	± 0.0006	1.0013	± 0.0006	-0.0009
15	bigten1	0.9960	± 0.0030	1.0069	± 0.0005	1.0043	± 0.0005	1.0048	± 0.0005	-0.0005
16	bigten2	0.9960	± 0.0030	1.0049	± 0.0005	1.0019	± 0.0005	1.0020	± 0.0005	-0.0001
17	pumet6	1.0000	± 0.0030	1.0043	± 0.0007	1.0031	± 0.0007	1.0029	± 0.0007	0.0001
18	pumet10	1.0000	± 0.0018	1.0003	± 0.0006	0.9994	± 0.0007	0.9993	± 0.0006	0.0000
19	pumet20	0.9993	± 0.0017	0.9996	± 0.0007	0.9974	± 0.0007	0.9995	± 0.0007	-0.0022

Table 12. Criticality Benchmark Results for Normal Uranium-Reflected Assemblies (Group 11)

 Table 13. Criticality Benchmark Results for Highly Enriched Uranium-Reflected Assemblies (Group 12)

No.	Filename	Benchmark $k_{eff}(A)$	STD	ENDF60 (B)	STD	KNE68 with PT (C)	STD	KNE68 w/o PT (D)	STD	Äk (C-D)
1	23umt2a	1.0000	± 0.0010	0.9967	± 0.0006	0.9959	± 0.0006	0.9958	± 0.0006	0.0001
2	23umt2b	1.0000	± 0.0011	0.9978	± 0.0006	0.9987	± 0.0006	0.9969	± 0.0006	0.0018
3	mixmet1	1.0000	± 0.0016	0.9967	± 0.0006	0.9963	± 0.0006	0.9969	± 0.0006	-0.0007
4	mixmet3	0.9993	± 0.0016	0.9992	± 0.0007	0.9987	± 0.0006	0.9979	± 0.0006	0.0008

No.	Filename	Benchmark $k_{eff}(A)$	STD	ENDF60 (B)	STD	KNE68 with PT (C)	STD	KNE68 w/o PT (D)	STD	Äk (C-D)
1	ieumt1a	0.9989		0.9970	± 0.0006	0.9966	± 0.0006	0.9968	± 0.0006	-0.0002
2	ieumt1b	0.9997		0.9963	± 0.0006	0.9977	± 0.0006	0.9983	± 0.0006	-0.0006
3	ieumt1c	0.9993		0.9991	± 0.0006	0.9979	± 0.0006	0.9985	± 0.0006	-0.0006
4	ieumt1d	1.0002		1.0005	± 0.0006	0.9994	± 0.0006	0.9981	± 0.0006	0.0013
5	mixmet8	0.9920	± 0.0063	0.9916	± 0.0005	0.9928	± 0.0005	0.9934	± 0.0005	-0.0007

Table 14. Criticality Benchmark Results for Other Assemblies (Group 13)

Benchmark	\div^2 Difference [*]	\div^2 Difference	\div^2 Difference
Group	(ENDF60)	(KNE68 with PT)	(KNE68 w/o PT)
1	1.0686E-04	1.1357E-04	1.2319E-04
2	2.0130E-04	1.6452E-04	1.5776E-04
3	8.2122E-06	2.0389E-05	1.7212E-05
4	7.5198E-06	1.2931E-05	1.7296E-05
5	-	-	-
6	1.7506E-05	1.0466E-05	1.2032E-05
7	8.7389E-05	8.5616E-05	8.1678E-05
8	4.1407E-05	5.4779E-05	5.0209E-05
9	1.6847E-04	1.2094E-03	1.6564E-04
10	3.5323E-05	3.9068E-05	3.2973E-05
11	1.9762E-04	1.4251E-04	1.6252E-04
12	1.3359E-05	1.6552E-05	1.9428E-05
13	7.7763E-06	6.2799E-06	6.8247E-06
Total	8.9273E-04	1.8761E-03	8.4677E-04
(w/o Group 9)**	(7.2427E-04)	(6.6668E-04)	(6.8112E-04)

Table 15. \div^2 Difference Between MCNP4C and Benchmark k_{eff}

* The \div^2 difference between MCNP and the experimental data can be defined as:

$$\mathbf{c}^{2} = \sum_{i} \frac{\left[MCNP(i) - Data(i)\right]^{2}}{MCNP(i) + Data(i)}$$

^{**} The values in parentheses are the sum of \div^2 differences for all benchmarks except Group 9.