UO₂ Xe-133

The Measurement of Diffusion Coefficient of Xe-133 in Urania with Respect to Oxygen Potentials

Abstract

The diffusion coefficient of Xe-133 was obtained from an annealing test. The specimens were made from a UO_2 single crystal powder with natural enrichment and weight and grain size were 300mg and 23µm. Oxygen potentials were obtained from oxygen sensor. Then, O/M ratios of three specimens were 2.0005, 2.16 and 2.01, respectively. Released fractions were obtained from both results of gamma scans and quantitative analysis with MCNP code. Activation energy of the diffusion coefficient in near stoichiomeric UO_2 was about 310 kJ/mol. Diffusion coefficient was observed to be higher with O/M ratio(300 times at 1600°C). Comparing with other data, data of near stoichiometric UO_2 are in agreement with them.

2002

1.

가., (1)

 $\frac{3}{\mathbf{R}_{eq}} = \frac{4\mathbf{p}ab}{4/3\mathbf{p}a^2b} = \frac{3}{a}$ (1)

.

, 'a' 'b' . (1) , (a)

-1 UO₂ (SEM)

(2~3µm) -1 . . SEM $23\mu m \pm 2\mu m$. 300mg 8.17x10¹³ neutrons/cm²-sec HANARO 2.68x10¹¹ fissions/g-sec 20 10~11 • , • Exp.1, Exp.2 Exp.3 .

가 -2 . 가 U MoSi₂ フト 1650 °C 가 O/M

Ca-stabilized ZrO₂

Kr, Xe I

2.2

xe-133

,

-2

.

200ml .

.

2.3 가

,	7	ł.	가 ,		
1m	3600	. E	xp.1, Exp.2 Exp.3	가	
12 , 6.5	, 1.5 .	-3	Exp.1 Exp.2	가	
1400 °C, 1500 °C	and 1600 °C	Exp.3	1600 °C		
	Xe-133				5
			가	,	

.

(Exp.1,Exp.2,Exp.3)

-4

	Exp.1, Exp.2	Exp.3		-370kJ/mol, -110	kJ/mol
-210kJ/mol				. C)/M
	Lindemer ¹⁾ 가		,	Exp.1,Exp.2	Exp.3
UO_{2+x} x	0.0005, 0.16 0.)1 .			

(2) Booth

 $\mathbf{f}_{i} = 1 - \frac{6}{\mathbf{p}^{2}} \mathbf{a}_{n=1}^{\mathbf{x}} \frac{1}{n^{2}} e^{-n^{2} \mathbf{p}^{2} (\mathbf{a}_{k=1}^{i} D_{k} D_{t_{k}})/a^{2}}$ (2)

'a' f D (2) 7⁺ 0.3

.

.

,

 $\mathbf{f} = \frac{\mathbf{6}}{\mathbf{a}} \sqrt{\frac{\mathbf{D}}{\mathbf{p}}} \sqrt{\mathbf{t}} \tag{3}$

, (2) , (3) 1/2 (3)

Exp.1 Exp.2 Matzke²⁾

Xe-133 (4)

 $\mathbf{f} = \mathbf{1} - \frac{\mathbf{C}_{a}}{\mathbf{C}_{b}} \exp(\mathbf{I}\mathbf{D}\mathbf{t}) \tag{4}$

.³⁾.

. Cs-137 Xe-133 . -6(a) MCNP

 $(-.6(b)^{4)}(c)^{5)}.)$

(a)

-6

MCNP , Xe-133 Cs-137 1.237 , Xe-133 27% 34% . , MCNP .

,

가 <1%

-1

, Exp.2 Exp.3

MCNP

	1
-	

	Diffusion coefficient (m ² /s)			Do	O (kJ/mol)
	1400	1500	1600	20	
Exp.1	7.95 × 10 ⁻¹⁹	2.35×10^{-18}	8.71 × 10 ⁻¹⁸	4.0 × 10 ⁻⁹ (±9.6%)	310 (±8.8%)
Exp.2	1.97 × 10 ⁻¹⁶	5.53 × 10 ⁻¹⁶	2.9×10^{-15}	$1.38 \times 10^{-5} (\pm 35\%)$	348 (±17%)
Exp.3			5.5×10^{-17}		

•

PIA	(a)		SEM	BET
				가
	•			
PIA				
Mazke ⁶⁾ Kashibe ⁷⁾ PIA				,
. ,				
	, 			
	가	trap		
Turnbull ⁵ $1.7 \times 10^{12} \sim 3.2 \times 10^{12}$ fissions/cm ⁵		71		
			_	
		uaj)	
PIA ,				. Iodine
caesium				
Krypton xenon ,		가 , PIA	L	
Xe-133 Kr-85 7	•,	Kr-85		(branch ratio) 1%
Xe-133				
, Kr-85		Xe-133		가

, PIA

,

±2µm(9%)

< 20%

-9

가 .

,	가			Findlay	12)	ELESIM
	Cornell ¹³⁾	FRAPCON-2	FASTGRASS ¹⁴⁾			
,					가	. ,
ANS 5.4 ¹⁵				FRAPCO	N-3	Massih
16)				. FEMAX	I-IV	Turnbull
가			10			
	Exp.1 가					
5.						
UO ₂		PIA			가	
MCNP						
Exp.1, Exp.2, Exp.3		300mg	UO_2	23 µm	가	
			Xe-133	3		
PL	A	O/M				
	20%		가 .			
pr	e-exponential factor					
Exp.1, Exp.2	2 Exp.3	UO _{2+x} x	x 0.0005, 0.16	0.01	. Exp.1	
UO_2		310 kJ/mo	ol .		Exp.1	가
			가			
1600 °C	Exp.2		Exp.1	300		
(cation))					

1. T.B.Lindemer, T.M.Besmann,' Chemical thermodynamic representation of UO_{2±x}.', J.Nucl.Mater. 30(1985)473-488

2. Hj.Matzke,' Gas release mechanisms in UO₂-A critical review.', Radiation Effects, 53 (1980)219-242

3. M.A.Mansouri, dissertation of U.C.Berkeley (1995)

4. Canberra product catalog (twelve edition)

5 EG&G ORTEC product catalog

6 Hj.Matzke,' Radiation enhanced diffusion in UO_2 and U_2 , Radiation Effects, 75(1983)317

 S.Kashibe, K.Une,' Effect of additives(Cr₂O₃, Al₂O₃, SiO₂, MgO) on diffusional release ofXe-133 from UO₂ fuels.', J.Nucl.Mater 254(1998)234-242

- 8. R.M.Cornell, J..A.Turnbull, J.Nucl.Mat. 41(1971)87
- 9. D.Davies and G.Long, AERE Rep.No.6267(1969)
- 10. C.Baker, J.C.Killeen, Proc. Int. Conf. On Materials for Nuclear Reactor Core Applications, Bristol UK,(1987) BNES, 153p.
- 11. A.B.Lidiard,' Self-diffusion of uranium in UO2.' J.Nucl.Mater 16(1966)106
- 12. J.R.Findlay, BNES Conference Chemical Nuclear Data, Canterbury, U.K.(1971)
- 13. R.M.Cornell,' The growth of fission gas bubble in irradiated uranium dioxide.', Phil.Mag. 19(1969)539
- 14. J.Rest, A.W.Cronenberg, J.Nicl.Mater.150(1987) 203
- 15. 'Background and derivation of ANS 5.4 standard fission product release model.', NUREG/CR-2507(1982)
- K.Forsberg, A.R.Massih,' Diffusion theory of fission gas migration in irradiated nuclear fuel UO₂.', J.Nucl.Mater 135(1985)140