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Abstract 

 

In spite of the current general trends of reliability data analysis using Bayesian techniques, 

which have been applied in most Korean PSAs, it is also necessary to apply the plant-specific 

data alone in risk-informed applications, because it can give more plant-specific insights. 

Considering the application of effective plant-specific data evidence, we developed the 

simulation methods for uncertainty propagation. With the separation of two uncertainty 

categories of both lack of knowledge and stochastic features, we can propagate the parameter 

uncertainty using Monte Carlo simulation technique. From the example application for the 

consideration on the arbitrary plant-specific input parameters, it shows that more broad 

uncertainty bounds can be developed than the case of generic input parameters. 

 

1. Introduction 

 

Probabilistic safety assessment (PSA) has been applied to nuclear facilities to give the 

reasonable end points’ estimates against the uncertain future states of hazard sources and the 

undesirable scenarios. For nuclear power plants, in order to assure the operational safety during 

life time, the end points’ measures should be based on a reasonable reliability data estimation of 

various components and human performance. Generally speaking, as described in ASME PSA 

standard [1], the objectives of the data analysis in the PSA are to provide estimates of the 

parameters used to determine the probability of the basic events representing equipment failures 

and unavailability in such a way that (a) parameters, whether estimated on the basis of plant-

specific or generic data, appropriately reflect that configuration and operation of the plant, and 

(b) uncertainties in the data are understood and appropriately accounted for. 

The parameter estimates may be based on relevant industry (i.e. generic) or plant-specific 



evidence. The past general trends were to investigate methods of combining generic and plant 

specific data - in particular, the possibility of using Bayesian techniques. Especially, in most 

Korean PSAs, the EPRI ALWR URD [2] has been utilized as a generic data which is based on 

the result of extraction from the available sources, and its value is selected based on judgment 

regarding applicability to the anticipated ALWR designs. This application, on the other hand, 

may give some unavoidable bias in the estimation of actual plant-specific reliability parameters. 

It is also noted that the uncertainties introduced due to the use of generic data may be greater 

than the statistical uncertainties of plant-specific data alone [3]. Therefore, where feasible, the 

parameter estimates by using acceptable plant-specific data is more desirable. It is, however, 

recommended to evaluate the hypothetical effect on the plant-specific historical data to 

determine to what extent the data can be used. The major factors influencing to the hypothetical 

effect on the variation of plant-specific data can be specified as; regulatory policy & principles, 

maintenance policy, organization & management practices, and quality control program, etc. 

These ‘influence factors’ can directly or indirectly affect to the change of pool of plant-specific 

data, e.g., parameters of random failure characteristics. 

In addition, the degree of uncertainty in using plant-specific data depends upon our total 

state of knowledge; upon all the evidence, data, and experience with similar courses of action in 

the past [4]. Therefore, a number of another factors affect the uncertainty in risk information. 

Interpreting the significance of the results of a PSA in light of the uncertainties is very 

important if the PSA results are to be applied to making meaningful decisions about changes in 

future risk.  

 

2. Calculation Model and Method 

 

This study presents the uncertainty analysis methodology for the case of plant-specific 

data variations, because it is important to identify the changes in the risk that could occur if 

several component failure probabilities were changed plant-specifically. The calculation method 

is proposed in order to consider the influence factors on the variation of plant-specific data. 

Firstly, the separation of uncertainty categories, depending on the individual features’ 

characteristic and state-of-knowledge, is made in order to explicitly propagate the uncertainty. 

Next, parameter distribution for each plant-specific data is estimated to simulate the effects of 

influence factors. Finally, Monte Carlo technique is used because it is particularly appropriate 

for analysis problems in which large uncertainties are associated with the input variables. 

 

A. Separating Treatment of Uncertainty  

In general, the potential risks to future evolution from both lack of knowledge (i.e., 



epistemic) and stochastic features have been subjected to complex uncertainty assessment 

studies to those who want to use PSA techniques. Therefore, most risk assessors now agree that 

all the variables, which are used in the evaluation models for risk, contain both (i) variability 

(randomness) and/or (ii) subjective uncertainty, because of their specific nature. There were 

diverse approaches for effectively categorizing the uncertainty during the last decade [5-7]. 

Variability represents the heterogeneity in a well-characterized and/or known population, 

and is usually not reducible through further investigation or study. It has also been referred to as 

Type A uncertainty, inherent uncertainty, stochastic uncertainty, as well as aleatory uncertainty.  

On the other hand, subjective uncertainty represents our ignorance about a poorly-characterized 

phenomenon or models, and may be reducible through further measurement or study. It has also 

been referred to as Type B uncertainty, cognitive uncertainty, as well as epistemic uncertainty. 

The term of aleatory/epistemic uncertainty is mainly used in this study. Anyway, in addressing 

the critical parameters in a model, we should consider the ‘non-deterministic’ specific nature 

originating from a very broad range of aleatory and epistemic uncertainties, in addition to 

inaccuracy due to modeling and simulation error, as explained by Oberkampf, et al. [8]. 

Inaccuracy due to modeling and simulation error is not concerned in this study.  

 

B. Uncertainty Propagation 

Recently, some remarkable researches were made for the uncertainty propagation, with 

emphasis on the separation principle for both uncertainty types in each variable, so called 

‘divide and conquer’, where are referred on Hoffman [9], Hofer [10], and Helton [11]. Also, the 

priority work is required to determine quantitatively how and in what way safety-related 

parameters contribute to risk. Therefore, it is essential to determine quantitatively how and in 

what way dominating uncertain variables contribute to risk, relating with diverse complex 

operating environment. The uncertainties arisen from different operating environments should 

be adequately propagated throughout the analysis. Also, in general, as the probability 

distribution well represents an expression of the quantitative, predicted values, it should be 

considered in the estimation of the end points’ measures. Probability distributions representing 

the uncertainties of plant-specific reliability data are used with some reasonable assumptions, 

which may simplify the given problem.  

 

3. An Application 

 

A. An Example Accident Sequence 

To develop a probability distribution of parameters, reported available data must be 

interpreted in light of the use of the input variables in the model. It is well acknowledged that 



uncertainties in a variable are treated in PSAs as being aleatory when the variable is assumed to 

be the result of a random process. Combined with the epistemic uncertainty of their parameters, 

we can imagine a variable status with ‘true but unknown’ distributions, as shown in Fig. 1. The 

assessment of distribution representing the variable uncertainty will follow the selection basis of 

Hattis [12]. In this study, as used in most PSAs, the lognormal distribution is assumed for 

aleatory uncertainty of all related parameters. For the case of epistemic uncertainty, the 

triangular distribution is assumed. As an example, station-blackout-induced core damage 

sequence from Ulchin 3&4 PSA [13] is selected, thus one minimal cutset is provided for the 

application as follows: 

 

MCS#2 (of LOOP-26) = ILOOP * AFTPW01B2A * EGDGK01ABET 

* NR-AC6HR 

 

Where, 

ILOOP = Initiating event (loss of offsite power, frequency = 6.15e-2/yr), 

EGDGK01ABET = 1E DG-01A & 01B & AAC DG-01E CCF fail to run (βγλTm), 

AFTPW01B2A = CCF (demand failure) of AFW TDP 01B & 02A (2/2) (βQ), 

NR-AC6HR = Non-recovery action probability of AC power within 6 hours (0.14). 

 

B. Parameter Estimation Process 

Table 1 shows the information of the related failure rates, demand probability, and 

common cause failure (CCF) factors of emergency DG and AFW TDP, which were used in 

Ulchin 3&4 PSA. Table 2 shows the reliability database of both generic and plant-specific 

evidence from the currently available database sources, especially for two major components 

denoted in above minimal cutset, where probability distribution of initiating event frequency is 

not specified because we desire to get any available insights only regarding component 

reliability data. In other words, in order to simplify the uncertainty problem, initiating event 

frequency, human action probability, and common cause failure factor are not concerned, but 

random failure probabilities are investigated. The plant-specific data for KSNP (YGN 3&4 and 

UCN 3&4) collected and analyzed by Han [14] was also utilized to give another evidence for 

plant-specific data. With the arithmetic evaluation of plant-specific values given in Table 2, the 

basic event parameters of exampled accident sequence chosen in this study were derived for 

arbitrary plant-specific epistemic distributions. It is assumed, also, that all components used in 

various plant-specific data have similar characteristics, and have essentially enough operating 

experiences (i.e., component population times operating years), in order to reduce a sampling 

standard error. 



 

C. Uncertainty Propagation Results 

To propagate the parameter uncertainty, Monte Carlo simulation technique is used. 

Because simple random sampling is preferred when sufficiently large samples are possible, on 

the other hand, because Latin hypercube sampling is used when large samples are not 

computationally practicable, we decided to establish an application principle for Monte Carlo 

sampling; (1) to use simple random sampling technique for aleatory uncertainty propagation, 

and (2) to apply Latin hypercube sampling technique for epistemic uncertainty propagation. 

Desirable features of Latin hypercube sampling are to give unbiased estimates for parameters 

across the range of sample variable [15]. 

The plots obtained from the program running of uncertainty propagation are presented 

with the probability distributions of sampled accident sequence, as shown in Fig. 2 and Fig. 3. 

As an end points’ measure, specific risk criteria, e.g., conditional core damage probability 

(CCDP) given LOOP event in this case, is used. Fig. 2 shows the traditional propagation results 

using generic data, as a form of cumulative density function, which results in a mean value of 

5.46e-5 and the error factor of 28.4. Fig. 3 shows the summarized propagation results using 

arbitrary plant-specific data, as a form of resultant family of probability density functions. The 

distributions shown in Fig. 3 provide the variability in the outcome that varies with different 

percentile levels of uncertainty. From all the curves in Fig. 2 and Fig. 3, one can conclude that 

under Monte Carlo simulation, more broad uncertainty ranges in application of plant-specific 

reliability data than generic data may be developed. The range of true uncertainty can be also 

obtained by determining the width of the confidence interval about a specified confidence 

bound (such as 95th) of all the variability curves. 

 

4. Concluding Remarks 
 

The results in the application of arbitrary plant-specific data evidence give us some 

insights for the applicability of risk information. For example, the confidence range considering 

the parameter uncertainty can be varied according to the specific application problems. It is also 

noted that more specified plant-specific data considering various influence factors can greatly 

reduce the uncertainty bounds in the actual problem. The effects of influence factors to the 

plant-specific component reliability behavior should be more researched with the methodology 

development. 

We can easily imagine that the overall uncertainty consideration on the plant-specific 

evidence of other input variables in PSA, such as initiating event frequency, human error 

probability, and common cause failures, as well as random failure probabilities, will give more 



plant-specific insights in the risk-informed decision making.  
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Table 1. The values used in Ulchin 3&4 PSA 

Components Point Estimate (Q) 
Error Factor (EF) of 

Point Estimate 
CCF β CCF γ CCF EF 

AFW TDP 

(AFTP) 

1.5e-2/d 3.6 0.797 - 10. 

EDG 2.4e-3/hr * 24 hr 3.2 0.0883 0.9423 10. 

 

 

 

 

 

Table 2. Reliability database in various sources 

Data 

Category 
Data Sources ([Ref.]) 

AFTP Fail to 

Start (FTS, 

/demand) 

EF of 

AFTP 

FTS 

EDG Fail to 

Run (FTR, /hr) 

EF of 

EDG FTR 

EPRI ALWR URD [2] 1.5e-2 3.6 2.4e-3 3.2 
Generic 

EUR, Rev. B [16] 7.0e-3 10. 3.0e-3 5.0 

KSNP [14] 1.71e-2  2.54e-2  

Oconee NPP [2] 5.3e-2  -  

Zion NPP [2] 2.6e-2  4.5e-3  

Indian Point NPP [2] 5.8e-3  8.2e-4  

Plant-

specific 

Millstone NPP [2] -  9.8e-4  

 



Table 3. The parameter values adopted for the application 

Parameters\Components AFTP EDG 

Log-Normal Log-Normal 

Type A Dist. Median CCF EF 

(Note) 

Median CCF EF 

(Note) 

Dist. Tri. Tri. Tri. Tri. 

Min. 5.8e-3 10 - α 8.2e-4 10 - α` 

Mode 2.5e-2 10. 7.9e-3 10. 
Type B 

Max. 5.3e-2 10+ α 2.5e-2 10 + α` 

(Note) Epistemic distribution of error factors depends on the complexity of the study. In this case, we assume that 

these distributions are very narrow. Therefore, single small value is given to the alpha. 
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Fig. 1. Conceptual representation of ‘True but unknown’ distributions. The large 4 distributions shows a 

example for aleatory uncertainty of given variable. The actual profile of aleatory uncertainty is not shown 

in this figure. Imaginatively, the small distribution shows epistemic uncertainty in a parameter of given 

variable. 

 

 

 



 

Fig. 2 End points’ measure representation #1 by the Monte Carlo simulation – Use of 

generic data for parameter estimation 

 

 

 

Fig. 3 End points’ measure representation #2 by the Monte Carlo simulation – Use of 

arbitrary plant-specific evidence for parameter estimation 
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