

2002

Burnup of spent nuclear fuel assembly J14 discharged from Kori-1 Nuclear Power Plant was determined by using Nondestructive Gamma-ray spectrometry combined with computer code calculation, and was compared and evaluated with the chemically determined burnup values in order to verify the precision of NDT method. As a result, nondestructively determined burnup values appeared to be agreed within 4.8 % error bound when the destructive chemical burnup value is referenced.

,

가

가 가 . 가 .

, . ,

,

Eu - 154/Cs - 137

1.

(1)

-11.

-

가

가

가 1 .

Cs-137

Eu-154

1 (lead cell)

(High Voltage Ge Supplier), (Personal (Multi-Channel Analyser: MCA)/ Computer) . (2) 1 J14 1 가 ((top nozzle) (Post Irradiation Examination Facility: PIEF) (dismantling pool) E11 ,

(gross gamma scanning)

mm, 660 mm 862 mm

1 mm

HPGe

(pneumatic transfer system)

,

1. J14 Fuel Type Cycle Discharge Discharge Enrichment Irradiation (Position) Reactor Burnup 7(E9), 8(J5), 14x14 PWR 3.1968 wt% Kori - 1 37,840 20 Jan.1989 9(H11) MWd/tU

(3)

Cs-137 Eu-154

2.

3.

 SCALE4.4
 ORIGEN-S
 [4]
 ,
 10-50 GWd/tU

 2 GWd/tU
 .
 .
 .
 .

•

-

.

,

4.

U, Pu Nd 2 (thermal ionization , . U, Pu mass spectrometer) Nd-150 가 (spike) U-233, Pu-242 Nd - 148 (isotope dilution mass spectrometry) . ASTM[5] , , , , [6.7] [6,7] .

111.

$$s = S = \pm \sqrt{\left\{ \sum (x_i - x)^2 / (n - 1) \right\}}$$
(1)

(2)
Eu-154

$$j_{1}$$
 723.3 keV, 873.2 keV, 1004.8 keV 4
, 19.7, 11.45, 17.9, 35.5
.
4 (2)
, 3 . (3)
 σ^{2} [8].
 $y = a + bx$ (2)
 $a = 1.52482\pm0.02256$,
 $b = 4.10747\pm2.27887$
 $s^{2} = \frac{SSE}{n-2}$, $SSE = \sum_{i=1}^{n} e_{i}^{2} = \sum_{i=1}^{n} (y_{i} - \hat{y}_{i})^{2}$ (3)
 e_{i} (residual), SSE (residual sum of squares), n ,
 y_{i} \hat{y}_{i} E_i

가

•

.

(coefficient of determination)

•

•

•

$$r^{2} = \frac{SSR}{SST} = \frac{\sum_{i=1}^{n} (\hat{y}_{i} - \overline{y})^{2}}{\sum_{i=1}^{n} (y_{i} - \overline{y})^{2}}$$
(4)

SSR(regression sum of squares), SST(total sum ofsquares). r^2 17 ·

3. Eu - 154

2.

	Sum of Squares	Square Mean	Coefficient of Determination(r ²)
Regression	SSR = 0.035106	MSR = 0.035106	
Residual	SSE = 0.000626	MSE = 0.000313	0.98248
Total	SST = 0.035732		

(3)

J14-E11-4 , 7 , 9

Cs-137 Eu-154

.

Eu-154/Cs-137

.

$$\boldsymbol{s} = \frac{X_1}{X_2} \sqrt{\left(\frac{\boldsymbol{s}_1^2}{x_1^2} + \frac{\boldsymbol{s}_2^2}{x_2^2}\right)}$$
(5)

3 7 . 3 2 7 ア5%

1.4 %

1.4 %

3. J14-E11-4 7

•

Measurements	Eu154/Cs137 Ratio	Error	Burnup (GWd/tU)
1	7.82E-3	3.2E-4	34.9
2	7.89E-3	6.2E-4	35.6
3	7.70E-3	2.9E-4	34.2
4	7.71E-3	3.5E-4	36.3
5	7.98E-3	3.9E-4	34.2
6	7.65E-3	3.9E-4	34.2
7	7.70E-3	4.9E-4	34.9
Mean	7.80E-3		34.9
Standard Error		1.12E-4	

.

-

2.

SCALE4.4 ORIGEN-S

	(curve fitting)	
(6)	, 4	

-

-

Isotope Ratio =
$$A + B_1(Burnup) + B_2(Burnup)^2$$
 (6)
 $A = -9.69004 \times 10^{-4}$
 $B_1 = 3.54089 \times 10^{-4}$
 $B_2 = -2.94845 \times 10^{-6}$

±4.8 %가 가

4.

3.

	Axial	Isotope Ratio	Burnup(Burnup(GWd/tU)	
Sample	Position	(Eu-154/Cs-137)	NDT	Chem.	Diff.
J14-E11-4	346 mm	$7.78 \times 10^{-3} \pm 1.4\%$	34.9	36.2	3.6 %
J14-E11-7	660 mm	$8.28 \times 10^{-3} \pm 1.4\%$	38.4	36.2	6.0 %
J14-E11-9	862 mm	$8.10 \times 10^{-3} \pm 1.4\%$	37.1	39.0	4.8 %

5 J14-E11

.

5. J14-E11

 C_{i}

Average Count Rate =
$$\sum_{i=1}^{n} C_i / n$$
 (7)

(2)

5. J14-E11

,

Average Burnup (GWd/tU)						
No.4 Sa	mple Ref.	No.7 Sa	mple Ref.	No.9 Sa	mple Ref.	Declared
NDT	Chem.	NDT	Chem.	NDT	Chem.	27.0
39.5	41.0	38.4	36.3	33.4	35.0	57.0

Eu-154

	,		,
Eu-154/Cs-137	±1.4 %	,	
-			,

.

.

가 . ±4.8 %

- 1. U.S. DOE, DOE/RW-0472 Rev.1, (1997).
- 2. K.J. Park et al., KAERI/TS-98/99, (1999).
- 3. K.J. Park et al, KAERI/TS-52/98, (1998).
- 4. O.W. Hermann and R.M. Westfall, ORNL/CR-0200, Vol.2, Rev.5, (1995).
- 5. American Society for Testing and Materials Standard Method E321-96, 1(1996).

•

- 6. J.S. Kim et al., J. Korean Nucl. Soc., 21(4), 277 (1989).
- 7. J.S. Kim et al., J. Korean Nucl. Soc., 33(4), 375 (1989).
- 8. W. Lichten, Data and Error Analysis 2nd Ed., Prentice Hall, (1999).