

Cracks in Sintered Duplex Burnable Absorber Pellet and Effect of Additives, Atmospheres and Heating Rate on the Densification of UO₂ Gd₂O₃

 $UO_2-12wt\%Gd_2O_3$,
 $UO_2-2wt\%Er_2O_3$ 7

 7 $UO_2 \ Gd_2O_3$

 7 ,
 dilatometer .

 / (backstress)

 .
 7 $UO_2 \ Gd_2O_3$

 .
 $UO_2 \ Gd_2O_3$.

 .
 $UO_2 \ Gd_2O_3$.

 .
 $UO_2 \ Gd_2O_3$.

150

Abstract

Crack formation has been investigated in a duplex burnable absorber pellet, which is composed of core, UO_{2} –12wt%Gd₂O₃, and shell, UO_{2} –2wt%Er₂O₃. The sintered core-shell interface was well joined, however, cracks propagated from the interface to the both region. The crack formation could be attributed to the backstress, which results from the differential densification between the core and the shell. The effect of additives, atmospheres and heating rate on the densification of UO_2 Gd₂O₃ was studied. Additives slightly affect the densification rate of UO_2 Gd₂O₃. The densification rate of UO_2 Gd₂O₃ was accelerated with the oxygen partial pressure of sintering atmosphere increased. The shrinkage delay due to the formation of UO_2 Gd₂O₃ solid solution may decrease with the heating rate increased.

2002

1.

가 Gd_2O_3 U^{235} 가 가 UO_2 가 4 . 가 가 가 가 가 가 .[1] 가 $UO_{2}-$ 가 12wt%Gd₂O₃, 가 $UO_2-2wt\%Er_2O_3$. Gd₂O₃가 가 가 가 Er_2O_3 , 가 Gd_2O_3 . HELIOS 가 가 가 .[1] , 가 가 가 가 (duplex pellet) , . 가 가 $UO_{2^{-}}$ • $2wt\%Er_2O_3$ UO_2 $UO_2 - 12wt\%Gd_2O_3$ UO_2 , 가 Gd_2O_3 1200 1500 $UO_2 \quad Gd_2O_3$ Gd_2O_3 Gd_2O_3 가 .[2-4] 가 가 , $UO_2-Gd_2O_3$ kinetics 가. ,
 Cr₂O₃, Al₂O₃, TiO₂, SiO₂, Nb₂O₅
 가
 가
 $UO_2-12wt\%Gd_2O_3$. , $UO_2-12wt\%Gd_2O_3$ 가 가 UO_2 Gd_2O_3 H₂-3%CO₂, 5%CO₂, 10%CO₂ **7** • $UO_2 \quad Gd_2O_3$. $UO_2 \quad Gd_2O_3$ 가 1100 1300

가

.

가

5 K/min, 10 K/min, 20 K/min 3

2.

Fig. 1 $UO_2-2wt\% Er_2O_3$, $UO_2-12wt\% Gd_2O_3$ 7 . 3 ton/cm² . 1700 ,

H₂ 3%CO₂ 4

8 mm 2.85 g Dilatometer $10 \ \mathrm{mm}$ dilatometer 5 K/min, 10 K/min, 20 • K/min 가 1650 가 , 가 push-rod . 가 . LVDT 가 cycle ,

3.

.

Fig. 3 UO_2 12 wt% Gd_2O_3 / UO_2 2 wt% Er_2O_3

.[7]

. / , /

(differential densification)

· (hard agglomerate) , , , .[5,6] 가 가 .[5,6] . platelet 기 (backstress)

Gd₂O₃, Er₂O₃가 가 1400 °C, 1000 °C UO_2 UO_2 가 .[1] 10 wt% Gd₂O₃7 가 1600 °C UO_2 , 2 wt% Gd₂O₃가 가 1600 °C 0.1% UO_2 0.03% 가 . , Fig. 3

UO₂-12wt%Gd₂O₃, UO₂-2wt%Er₂O₃ $UO_2-12wt\%Gd_2O_3, UO_2-2wt\%Er_2O_3$ Fig. 4 . UO₂-12wt%Gd₂O₃ UO₂-2wt%Er₂O₃ 가 1000 $UO_2-12wt\%Gd_2O_3$ 가 가 $UO_2-2wt\% Er_2O_3$, . 1500 $UO_2-12wt\%Gd_2O_3$ 가 가 1200-1400 가 Gd₂O₃フト 가 가 1200-1400 Manzel . UO₂ Gd₂O₃ [2] UO_2 Gd_2O_3 . UO_2 가 .[4] ,

 $\begin{array}{cccc} UO_2-2wt\%\,Er_2O_3 & UO_2 \\ Er_2O_3 & & & \\ UO_2-12 \ wt\% \ Gd_2O_3 \ / \ UO_2 \ 2 \ wt\% \ Er_2O_3 \end{array} \quad .$

Er₂O₃ 7 (backstress)

. /

가 가 . . , 가 soft 가 가 • , $UO_2-2wt\%Er_2O_3$, $UO_2-12wt\%Gd_2O_3$ 가 가 가 $UO_2\!\!-\!\!12wt\%Gd_2O_3$ 가 Cr₂O₃, Al₂O₃, TiO₂, SiO₂, Nb₂O₅ 5 . $UO_2-2wt\%Er_2O_3$ milling , . Cr₂O₃, Al₂O₃, TiO₂, SiO₂, Fig. 5 UO_2 -12wt%Gd₂O₃ . Cr₂O₃, Al₂O₃, TiO₂, SiO₂, Nb₂O₅ Nb₂O₅ 0.1–0.2 wt% フト 가 가 $UO_2-Gd_2O_3$.[8,9] 가 . $UO_2-12wt\%Gd_2O_3$ 가 가 1260 Cr_2O_3 $UO_2-12wt\%Gd_2O_3$ 가 $UO_{2}-$ 가 2wt%Er₂O₃ . Cr_2O_3 7 UO₂−12wt%Gd₂O₃ , $UO_{2^{-}}$ Al_2O_3 , TiO_2 , SiO_2 , Nb_2O_5 . Cr_2O_3 1380 가 $12wt\%Gd_2O_3$ UO₂-2wt%Er₂O₃ Cr_2O_3 . $UO_2-12wt\%Gd_2O_3$ Fig. 6(a) , Fig. 6(b) . H₂ CO₂ 3%, 5%, 10% 7 가 , , 가 3 . Fig. 6(b) 2 1 2 Yuda [4] UO₂-Gd₂O₃ UO_2 1 가 가 Gd_2O_3 2

가 UO_2 • 가 . 2 1 UO_2 UO_2 가 1 . , 2 $UO_2-12wt\%Gd_2O_3$ Fig. 7(a) , Fig. 7(b) 가 . Fig. 7(a) , 가 가 • 가 . Fig. 7(b) 1 가 가 가 UO_2 $UO_2 \quad \ \ Gd_2O_3$ UO_2 UO_2 Gd_2O_3 . , $UO_2 \quad Gd_2O_3$

.

.

가 .

1

4.

, 7 7 7 (backstress) . $UO_2-2wt\%Er_2O_3$ UO_2 ,

 $UO_2-12wt\%Gd_2O_3$ UO_2 Gd_2O_3 1200
 1500
 7

 .
 .

 Cr_2O_3, Al_2O_3, TiO_2, SiO_2, Nb_2O_5
 7

 UO2-12wt%Gd2O3
 ブト
 ブト
 ブト
 Cr2O3
 1260

 UO2-12wt%Gd2O3

 1260

 1260

 ブト
 UO2-2wt%Er2O3

 ブト

 1260

・ ブ・ ブ・ UO₂ ブ・ 1 ・ 2 ブ・ UO₂ 1 UO₂

UO₂ . , 7¦ 2

1.	: , KAERI/RR-2023/99, 2000.
2.	R. Manzel and W. O. Dörr, "Manufacturing and Irradiation Experience with UO2/Gd2O3 Fuel," Am.
	Ceram. Soc. Bull., 59 601-603 (1980).
3.	S. M. Ho and K. C. Radford, "Structural Chemistry of Solid Solutions in the UO ₂ -Gd ₂ O ₃ system,"
	Nucl. Tech., 73 350-360 (1986).
4.	R. Yuda and K. Une, "Effect of Sintering Atmosphere on the Densification of UO_2 -Gd ₂ O ₃
	compacts," J. Nucl. Mater., 178 195-203 (1991).
5.	, : , , , , , , , , , , , , , , , , , ,
6.	M. N. Rahaman, Ceramic Processing and Sintering, Marcel Dekker, Inc., New York, 1995.
7.	F. F. Lange and M. Metcalf, "Processing-Related Fracture Origins: II, Agglomerate Motion and
	Cracklike Internal Surfaces Caused by Differential Sintering," J. Am. Ceram. Soc., 66 398-406
	(1983).
8.	K. W. Kang, K. S. Kim, K. W. Song, J. H. Yang, and Y. H. Jung, "Effect of TiO_2 and $Al(OH)_3$ on
	Sintering Behavior of UO ₂ -Gd ₂ O ₃ Fuel Pellet," J. Kor. Nucl. Soc., 32 559-565 (2000).
9.	K. S. Kim, K. S. Song, K. W. Kang, J. H. Yang, and J. H. Kim, "Sintering of a Mixture of UO_2 and
	Gd ₂ O ₃ Powders Doped with Cr ₂ O ₃ -SiO ₂ ," J. Kor. Nucl. Soc., 33 386-396 (2001).

.

•

Fig. 1. Schematic of duplex forming mold.

Fig. 2. Cross sections of sintered duplex pellets, (a) core: UO₂, shell: UO₂, (b) core: UO₂-12wt%Gd₂O₃, shell: UO₂-2wt%Er₂O₃.

Fig. 3. Cracks in a sintered duplex pellet, (a) top-view, (b) side-view.

Fig. 4. Shrinkage curves for UO_2 12 wt% Gd_2O_3 and UO_2 2 wt% Er_2O_3 .

Fig. 5. Shrinkage curves for UO_2 12 wt% Gd_2O_3 with various dopants.

(a)

2

Fig. 6. (a) Shrinkage curves and (b) shrinkage rate for UO₂ 12 wt% Gd₂O₃ under various sintering atmospheres.

Fig. 7. (a) Shrinkage curves and (b) shrinkage rate for UO₂ 12 wt% Gd₂O₃ under various heating rate.