

7├ (U_{1-y}M_y)O_{2±x}

(U,Er)O₂, (U,Gd)O₂, (U,Nb)O₂

.

Abstract

Previously reported data about the dependencies of oxygen nonstoichiometry and electrical conductivity on oxygen partial pressure in Lanthanide and Nb⁵⁺ doped UO₂ systems have been reviewed. It was found that consistency between oxygen nonstoichiometry and electrical conductivity was somewhat poor and consequently, the suggested defect models were incongruent with each other. A new stoichiometric oxygen composition was proposed to solve this inconsistency and the oxygen partial pressure dependency of nonstoichiometry and electrical conductivity was reanalyzed in $(U,Er)O_2$, $(U,Gd)O_2$ and $(U,Nb)O_2$ system.

1.

•

 UO_2 (oxygen-excess nonstoichiometric UO_{2+x} Willis [1] ,

oxide)

 $\left(2O_i^a \cdot 2V_o \cdot 2O_i^b\right)$ cluster [2-6]. U 가가 가 , , MOX Pu, Nb 가 UO_2 UO_2 [7]. hypostoichiometric UO_2 • . , $(U_{1-y}M_y)O_{2\pm x}$ $(U_{1-y}M_y)O_{2\pm x}$ [8-15]. (*x*) (o) $x \propto P_{O_2}^{1/n}$, $\boldsymbol{S} \propto P_{O_2}^{1/n'}$ 가 . mass action law , 가 $UO_2 = \left(2O_i^a \cdot 2V_o \cdot 2O_i^b\right)$ cluster 가 . 이/M 가 2 $\left(O_i^a \cdot 2V_o \cdot 2O_i^b\right)$ cluster model . O/M 7+ 2 hypostoichiometric • . • carrier . • +37} 가 가 +5가 가 가 가 Nb^{5+} UO_2 가 . 가 2. 가 $(U_{1-y}M_y)O_{2\pm x}$ 3+ 가 가 . UO_2 가 , UO_2

2.1. Hyperstoichiometric

Hyperstoichiometric UO_{2+x} $\left(2O_{i}^{a}\cdot 2V_{o}\cdot 2O_{i}^{b}
ight) = \left(O_{i}^{a}\cdot 2V_{o}\cdot 2O_{i}^{b}
ight)$ defect cluster model . Kroger-Vink

$$2V_i^a + 2V_i^b + 2O_o + O_2 \leftrightarrow \left[2O_i^a \cdot 2V_o \cdot 2O_i^b\right]^{n'} + nh^{\bullet}$$

$$V_i^a + 2V_i^b + 2O_o + 1/2O_2 \leftrightarrow \left[O_i^a \cdot 2V_o \cdot 2O_i^b\right]^{n'} + nh^{\bullet}$$
(1)
(2)

$$n\left[\left(2O_{i}^{a}\cdot 2V_{o}\cdot 2O_{i}^{b}\right)^{n'}\right] = h^{\bullet}$$

$$\left[\left(O_{i}^{a}\cdot 2V_{o}\cdot 2O_{i}^{b}\right)^{n'}\right] = h^{\bullet}$$

$$(3)$$

$$n\left[\left(O_{i}^{a} \cdot 2V_{o} \cdot 2O_{i}^{b}\right)^{n'}\right] = h^{\bullet}$$

$$(4)$$

$$7 \dagger \qquad .$$

$$\left[\left(2O_i^a \cdot 2V_o \cdot 2O_i^b\right)^{n'}\right] = x$$

$$\left[\left(O_i^a \cdot 2V_o \cdot 2O_i^b\right)^{n'}\right] = \frac{1}{2}x$$
(5)
(6)

mass action law

.

(2)

$x, \mathbf{S} \propto P_{O_2}^{1/(n+1)}$	for	$\left(2O_i^a \cdot 2V_o \cdot 2O_i^b\right)$ cluster model	(7)
$x, \mathbf{S} \propto P_{O_2}^{\frac{1}{2}(n+1)}$	for	$\left(O_i^a \cdot 2V_o \cdot 2O_i^b\right)$ cluster model	(8)

•

•

n	1~2	가			Ln
10mol%		가	n	2~4	가 .
					n
				hype	erstoichiometric

hyperstoichiometric

$$\left(2O_i^a \cdot 2V_o \cdot 2O_i^b\right)$$
 $\left(2O_i^a \cdot 2V_o \cdot 2O_i^b\right)$ $\left(O_i^a \cdot 2V_o \cdot 2O_i^b\right)$

2.2. Hypostoichiometric

Hypostoichiometric

hyperstoichiometric 가

hypostoichiometric

hyperstoichiometric . hypostoichiometric p-type n-type 가 가 . 가 Dudney[3] . 3+가 가 charge compensation hole Ln 가 . Ohmichi [17] hypostoichiometric O/M 가 가 Matsui [14] $(U_{1-y}La_y)O_{2\pm x}$. 가 가 가 hole 가 Ln carrier 가 . hypostoichiometric 가 2.3.

.

•

.

UO_{2+x} Ln 가 가

Ln ³⁺	U^{4+}	U^{5+}		U^{5+}	가
		. 0	/M 가 2.0		가
U^{5+}	가				
U^{5+}	U^{4+}		U^{4+}	U^{3+}	
U ⁴⁺ Ln	3+				
가			가		
$(U_{1-y}^{4+}Ln_{y}^{3+})O_{2}$	$-\frac{y}{2}$		(9)	1	
가					•
$(U_{1-y-2x}^{4+}U_{2x}^{5+}L)$	$(u_y^{3+})O_{2-\frac{y}{2}+x}$		(10))	
가 UO	2		2.0	(9)	
		가		가	가

,

system

.

2.4. $(U_{1-y}Er_y)O_{2-\frac{y}{2}+x}$ 7 $(U_{1-y}Ln_y)O_{2\pm x}$

$$(U_{1,y}Er_{y})O_{2zx} (U_{1,y}Er_{y})O_{2zx} (U_{1,y}Er_{y})O_{2zx} (Kim[13] (Kim[13] (U_{1,y}Er_{y})O_{2zx} (Kim[15] (Kim) (Kim) (Kang[15] (Kim) (Kim) (Kang[15] (Kim) (Kim)$$

•

2.5. $(U_{1-y}Gd_y)C$	$P_{2-\frac{y}{2}+x}$					
$(U_{1\text{-}y}Er_y)O_{2\pm x}$			hyperstoichiometric			
. Hypost	oichiometric					
			Gd가	UO ₂		
		가		フ		
	(9)				. (10)	
UO_2	가	Gd가	UO_2			
가						
hypostoichiometric			가	carrier	hole	
. , D	oudney[3]가			hole	가	
		2 Gd가	0.087mole	(U _{0.913}	Gd _{0.087})O _{1.9565+x}	
				. Er		
가						
Fujino[18-24]	2+7ŀ 3+7ŀ	가	(U1 vMv)	O _{2+v}		
2 0	2111 0111	- 1	(C rynny)			
2.0						
•						
					71	
•						
configurational entr	ору				_	
cluster				hyp	ostoichiometric	
	가	,		U^{5+}		
	configurational ent	ropyフト	∞			
가				가		
, 가	Nakajima [25]	Y ₂ O ₃ 7	UO_2	mass spect	roscopy	

가

•

•

(1-x)UO ₂ -xYO _{1.5}	가				UO _{2-0.5x}	
			가	(9)		
	가					
3. (U _{1-y} Nb _y)O _{2±x}						
Nb (U1	-yNby)O _{2±x}		가 기	ት Ln ³⁺ ንት		
	Matsui [16]	Nb가	UO_2			
			NbZ	የት		
hyperst	oichiometric		UO	2	O/M	
:	가				가 C	/M Nb
가	가			O/M	가	
UO ₂	•					가
가	가			가		. Matsui
		71				
Nh Ln ³⁺		4+	5+	가가	0/\	17-7-20
Nb Nb ⁴⁺		가	U4+ N	Jb4+71 5+	가. 0/1	1 - 1 - 2.0
가 .	·		O/M 7	UO2	2	Nb4+フト
U ⁴⁺ Nb ⁵⁺		U ⁴⁺ 가	U^{5+}	7	የት	
기 U ⁴⁺ Nb ⁵⁺						
(U _{1-y} Nb	y)O2+0.5y±x				(11)	
Nb ⁵⁺⁷	'⊦ Nb⁴+					
가 가		τ	J4+フト U ⁵⁺			가
hole	가 가					
3			Nb가 0.0	05mol	UO ₂	

O/M =2.0

.

•

1. $(U_{0.94}Er_{0.06})O_{1.97+x}$

2. (U0.913Gd0.087)O1.9565+x

3. $(U_{0.95}Nb_{0.05})O_{2.028\pm x}$

- [1] Willis, B.T.M. (1978) Acta Crystallogr., A34, 88
- [2] Lee, H.M. (1973) J. Nucl. Mater., 48, 107
- [3] Dudney, N.J., Coble, R.L. & Tuller, H.L., (1981) J. Am. Ceram. Soc. 64, 627
- [4] Matsui, T. & Naito, K., (1985) J. Nucl. Mater., 132, 212
- [5] Matsui, T. & Naito, K., (1986) J. Nucl. Mater., 138, 19
- [6] Kang, S.H., Lee, J.H., Yoo, H.I., Kim, H.S. & Lee, Y.W. (2000) J. Nucl. Mater., 277, 339
- [7] Assmann, H. & Bairiot, H., "Process and Product Control of Oxide Powder and Pellets for Reactor Fuel Application", in Guidebook on Quality Control of Water Reactor Fuel, Tech. Report Series N0.221, IAEA, Vienna (1983)
- [8] Une, K. & Oguma, M., (1982) J. Nucl. Mater., 110, 215
- [9] Une, K. & Oguma, M., (1983) J. Nucl. Mater., 115, 84
- [10] Lindemer, T.B. & Brynestad, J., (1986) J. Am. Cerm. Soc. 69, 867
- [11] Lindemer, T.B. & Sutton, Jr., A.L., (1989) J. Am. Cerm. Soc. 71, 553
- [12] Park, K. & Olander, D.R., (1992) J. Nucl. Mater., 187, 89

- [13] Kim, H.S., Yoon, Y.K. &Lee, Y.W. (1995) J. Nucl. Mater., 226, 206
- [14] Matsui, T., & Nato, K. (1987) J. Nucl. Mater., 151, 86
- [15] Kang, S.H., Yi, J.D., Yoo, H.-I., Kim, S.H. & Lee, Y.W., (2002) J. of Phys. & Chem. Od Solids, 63, 773
- [16] Matsui, T., & Nato, K., (1985) J. Nucl. Mater., 136, 59
- [17] Ohmichi, T., Takeshita, H., Fukushima, S., & Maeda, A., (1987) J. Nucl. Mater., 151, 90
- [18] Fujino, T. et al. (1992) J. Nucl. Mater., 189, 103
- [19] Fujino, T. et al. (1995) J. Nucl. Mater., 223, 6
- [20] Fujino, T. et al. (1997) J. Nucl. Mater., 246, 150
- [21] Fujino, T. et al. (1999) J. Nucl. Mater., 265, 154
- [22] Fujino, T. et al. (2000) J. Nucl. Mater., 282, 232
- [23] Fujino, T. et al. (2001) J. Nucl. Mater., 289, 270
- [24] Fujino, T. et al. (2001) J. Nucl. Mater., 297, 332
- [25] Nakajima, K., Ohmichi, T., & Arai, Y., (2002) J. Nucl. Mater., 304, 176