'2002

150	(11
	· ·

)

Benchmark Calculations of 150-group Cross Section Library for LMR's

Abstract

For the purpose of diversification of selection of cross section library for neutron calculation of LMR, the 150 multi-group cross section library was generated from ENDF-VI release6. The set was then examined by analyzing measured reactivity quantities such as control rod worth, Doppler effect and sodium void effect for BFS critical assemblies that we obtained through the critical experiment plan for developing the KALIMER core design. The calculated results based on 9 group structure using the new set were also compared with those of JEF set based on the same group structure and compared with those of the same set based on 25 group structure to find the proper group structure. ENDF-VI-based set shows a small deviation in predicting measured integral quantities in comparison with the previous set and a small group effect.

1.

					IPPE	BFS-1	
BFS	,						
			[1-2].			가	
JEF-2.2	KAFAX-F22						
ENDF/B-VI Release 6		150	KAFAX-E66	[3]7ŀ			가
	·	break	keven BFS				

, [4] KAFAX-E66 KAFAX-F22[5] KAFAX-E66

2. BFS

IPPE BFS-1 BFS-75-1, BFS-73-1 BFS-55-2, BFS-55-1 IPPE . BFS-75-1 2 1998 IPPE BFS-1 15.11% LEZ(Low Enrichment Zone) (IC:Inner Core) . 19.96% HEZ(High Enrichment Zone) 2 (OC:Outer Core) RB-1 RB-2 RB-1(Radial Blanket-1) U-238 (pellet) RB-2(Radial Blanket-2) 50 cm • . BFS-73-1 BFS-1 U-235 18.5% 7

 7!
 . BFS-55-2

 2
 . 40%

 BFS-55-1
 . BFS-55-1

 1
 . BFS-75-1

 1
 . BFS-75-1

가, 가, BFS-73-1 가, 가 , 가 . BFS-55-2 BFS-55-1 . , 가 . Breakeven , , fissile , 1.05 2

3.

			K	AFAX-E66, KAFAX-F	
KAFAX-F22	1997	가	JEF-2.2	80	24
			KALIMER		,

.

150 12 ENDF/B-VI Release 6 (KAFAX-E66).

			,	BFS		
9	25			가	150 , 80	
		(coarse meshed) RZ	TWODAN	T[6]	. 가	9
25					, (hex-z)	1
			DIF-3D	[7]		

4.

- 가 4.1
 - 가 가 가 5 1 1 B₄C(natural) 3 8 9 5 4가 ring 1 4 2 1 1, 3, 5 6 가 1 6 가

9

JEF(9g)가 3%

가

•

JEF

1

JEF(9g)가 ENDF(9g)

ENDF(9g)

25

가

9

1%

- 가 .
- DIF-3D JEF-2.2 가 KAFAX-F22) ENDF/B-VI 가 JEF(9g) (KAFAX-E66 (ENDF(9g), ENDF(25g)) ENDF(9g)가 JEF(9g) .
- 1% . 3%
 - 1~3% .

.

4.2

가 가 •) (

(sample oscillation method)

900 K 가 가

.

3 . BFS-75-1 UO₂ JEF(9g) ENDF(9g) 7 0.1288 JEF(9g) 7% ENDF(9g)7 JEF(9g) ENDF(9g) ENDF(25)g 7t 0.8093 ENDF(9g) . 가 . ENDF(25g) JEF(9g) 7 0.9381 JEF(9g) 45% . NpO₂ JEF(9g) ENDF(9g) 7t 0.1855 JEF(9g) 43% 50% ENDF(9g) ENDF(25)g JEF(9g)가 ENDF(9g) . 7 . ENDF(25g) JEF(9g) 7 0.0807 ENDF(9g) 33% 61% . BFS-73-1 UO₂ 가 0.0124 JEF(9g) JEF(9g) ENDF(9g) 7t 0.0712 JEF(9g) 7% ENDF(9g)7t JEF(9g) ENDF(9g) ENDF(25)g 7t 0.9713 ENDF(9g) 96% . ENDF(25g) JEF(9g) 7 1.0425 ENDF(25g) 97% . ENDF/B-VI 가 4 breakeven 가

4.3

1

7t . 3

BFS-75-1 JEF(9g) ENDF(9g) 7 0.2491 JEF(9g) 7% JEF(9g)가 ENDF(9g) ENDF(9g) ENDF(25)g . 가 0.5443 ENDF(9g) 가 16% . ENDF(25g) JEF(9g) 가 0.2952 JEF(9g) JEF(9g) ENDF(9g) 9% . BFS-55-2 17% JEF(9g)7 ENDF(9g) 가 0.2513 JEF(9g) . ENDF(9g) 가 ENDF(9g) ENDF(25)g 가 0.2637 18% . ENDF(25g) JEF(9g) 가 0.0124 JEF(9g) 1% . BFS-55-1 JEF(9g) ENDF(9g) 가 0.117 JEF(9g) 9% ENDF(9g) ENDF(25)g 7 JEF(9g)가 ENDF(9g) . 0.002 ENDF(9g) 1% . ENDF(25g) JEF(9g) 가 0.119 ENDF(25g) 9% .

.

 JEF

 2.2 9
 ENDF/B-VI 25
 プ
 .
 5
 breakeven

 drive fuel
 JEF 2.2 9

 ENDF/B-VI 25
 プ
 ?
 ?
 .

Rossi- , varience-to-mean, covarience-to-mean Cf –252 Rossi-BETA-K[8] . BETA-K , DIF-3D eff (yield number) • eff 가 (family) ENDF-VI 6 . BFS-73-1 Cf 4 JEF(9g) ENDF(9g) 가 0.0031 source pseudo reactivity 0.2% ENDF(9g) ENDF(9g) ENDF(25)g 0.3% JEF(9g) 가 0.0036 ENDF(9g) . Rossi-alpha 가 0.0029 ENDF(9g) ENDF(9g) 0.3% 7 + 0.0035 ENDF(9g) ENDF(9g) ENDF(25)g 0.3% . BFS-55-1 Cf source pseudo reactivity JEF(9g) ENDF(9g) 가 0.0019

가

JEF(9g)	0.2%			ENDF(9g)	ENDF(25)	g 가 0.0062
ENDF(9g)	0.	6%				
	. Brea	keven				가
5						
0.						
ENDF/B-VI	150	KAFAX-E66	가		bre	akeven
IPPE E	BFS	가				
JEF-2.2						
			ENDF/B-VI			JEF-2.2
		가				가
7	ł			JEF	5 2.2 9	ENDF/B-VI 25
가			ENDF/B-V	I 가		

.

•

[1]	H. Song, et al, "Evaluation of C	ore Nuclear Analysis	for LMR using M	leasured Physics Para	meters of B	FS-73-1
	Critical Assembly", Annals of Nuc	clear Energy, Vol. 27(2000).			
[2]	2 , "BFS-75-1	", KAERI/TI	R-1786/2001,	(2001).	
[3]	, , "KAFAX-E66:	KALIMER		15	50	12
	", NDI	-23/01,	(2001).			
[4]	1 , " 1:	50		", 2001		,
	(2001).					
[5]	, , "KAFAX-F22	: JEF-2.2				",
	KAERI/TR-842/97,	(1995).				
[6]	R. E. Alcouffe, et al, "User's Guid	le for TWODANT: A	Code Package for	Two-Dimensional, Di	ffusion-Acce	elerated,
	Neutron Transport", LA-10049-M	, Los Alamos Nationa	l Laboratory (Feb. 2	1990).		
[7]	R. D. Lawrence, "The DIF-3D	Nodal Neutronics C	ption for Two- a	nd Three-Dimensiona	l Diffusion	Theory
	Calculations in Hexagonal Geome	try", ANL-83-1, Argo	nne National Labor	atory (Mar. 1983).		
[8]	4 , "	,	ВЕТА-К ",	KAERI/TR-1120/98,		
	(1998).					

2. Breakeven layout

3.

4. Breakeven

5. Breakeven

1.	<u>가 (C/E)</u>			
		ENDF(9g)	ENDF(25g)	JEF(9g)
1	5	0.9513	0.9760	0.9417
2	5	0.9591	0.9840	0.9494
3	5	0.9631	0.9880	0.9533
4	5	0.9494	0.9740	0.9398
5	5	0.9513	0.9760	0.9417
6	5	0.9611	0.9860	0.9513
1,4	5	0.9377	0.9601	0.9456
1,3,5	5	0.9518	0.9735	0.9662
1,2,3,4,5,6	5	0.9620	0.9754	0.9757
7	4	0.9735	0.9752	1.0033
8	4	0.9257	0.9399	0.9511
7,8	4	0.9424	0.9496	0.9699

* (1) B4C(natural) 103 pellet (2) Sodium 69 + Stainless steel pellet 34 (3) B4C(80%) + B4C(natural) pellet 2 (4) B4C(natural) 52 + Sodium pellet 51(5)Sodium 34 + SS 34 + B4C(natural) pellet 35

2.	(C/E)			
		ENDF(9g)	ENDF(25g)	JEF(9g)
DEC 75 1	U02	1.7647	0.9554	1.8935
0 0-70-1	NpO ₂	0.2461	0.1654	0.4316
BFS-73-1	U02	1.0089	0.0376	1.0801

3.	(C/E)		
	ENDF(9g)	ENDF(25g)	JEF(9g)
BFS-75-1	3.3246	2.7803	3.0755
BFS-55-2	1.3989	1.1352	1.1476
BFS-55-1	1.2069	1.2089	1.0899

4.	(C/E)				
		ENDF(9g)	ENDF(25g)	JEF(9g)	
DEC 72 1	Case 1	1.0384	1.0348	1.0353	
DF0-73-1	Case 2	1.0103	1.0068	1.0074	
BFS-55-1	Case 1	0.9708	0.9646	0.9727	
Breakeven*	BOEC	0.00357	0.00355	0.00355	

1:Cf source pseudo reactivity method, 2:Rossi-alpha method, *: