

가

가가

SMAC

ABSTRACT

A multidimensional numerical code for solving incompressible two-fluid is presented based on the finite volume method (FVM) and the simplified marker and cell (SMAC) method. Details of the present method and comparisons between the calculation and experiment are described for two-dimensional flow patterns of bubbly flow which show good agreement. Further implementations of the interfacial correlations are required for the application of the present code to various two-phase problems.

,

[4]. Tobias et al.

.

, SMAC . ,

.

(discretization)

(finite volume method) SMAC(the

.

.[5]

Simplified Marker And Cell)

1)

k (,) .

$$\frac{\partial}{\partial t} \boldsymbol{a}_{k} \boldsymbol{r}_{k} + \nabla \cdot (\boldsymbol{a}_{k} \boldsymbol{r}_{k} \boldsymbol{u}_{k}) = 0 \tag{1}$$

$$(\qquad) + (\qquad): \nabla \cdot (\boldsymbol{a}_{g} \boldsymbol{u}_{g} + \boldsymbol{a}_{l} \boldsymbol{u}_{l}) = 0 \tag{2}$$

$$\frac{\partial}{\partial t}\boldsymbol{a}_{k}\boldsymbol{r}_{k}\boldsymbol{u}_{k} + \nabla \cdot \boldsymbol{a}_{k}\boldsymbol{r}_{k}\boldsymbol{u}_{k} \cdot \boldsymbol{u}_{k} = -\boldsymbol{a}_{k}\nabla p + F_{ik} + F_{vk} + \boldsymbol{a}_{k}\boldsymbol{r}_{k}g + \boldsymbol{a}_{k}\boldsymbol{m}_{k}\nabla^{2}\boldsymbol{u}_{k}$$
(3)

CFD

.

mass) . 7
. [6, 7]
Andersen .[8]
(mixture) drift 7
Andersen .
Andersen .

$$F_{ig} = -F_{il} = \mathbf{a}_{g} \mathbf{a}_{l} (\mathbf{r}_{l} - \mathbf{r}_{g}) g \frac{|u_{g} - u_{l}|(u_{g} - u_{l})}{V_{gi}^{2}}$$

 $(\mathbf{r}_{l} - \mathbf{r}_{g}) g drift , V_{gj}$.
drift Zuber Findlay .[8]
 $V_{gj} = 1.53 \left[\frac{\mathbf{s}g(\mathbf{r}_{l} - \mathbf{r}_{g})}{\mathbf{r}_{l}^{2}} \right]^{1/4}$

2)

.

.

, F_{ik} , F_{vk}

(Finite Volume Method)

.

(interfacial drag) 가 (virtual

. , staggered
$$u_k$$

 $a_k r_k$. , k (mass flux),
 $a_k r_k u_k$ $u_k a_k r_k$ (interpolation)

(bubbly flow)

.

$$\frac{\partial}{\partial t} \mathbf{f}_{k} + \nabla \cdot \mathbf{y}_{k} = b_{k}$$
(4)
, \mathbf{f}_{k} , \mathbf{y}_{k}
(flux), b_{k} source sink . 1

. ,

.

	1.	
$oldsymbol{f}_k$	$oldsymbol{y}_k$	b_k
$\boldsymbol{a}_k \boldsymbol{r}_k$	$\mathbf{a}_k \mathbf{r}_k u_k$	-
$\boldsymbol{a}_k \boldsymbol{r}_k \boldsymbol{u}_k$	$\boldsymbol{a}_k \boldsymbol{r}_k \boldsymbol{u}_k \cdot \boldsymbol{u}_k$	$-\boldsymbol{a}_{k}\nabla p+F_{ik}+F_{vk}+\boldsymbol{a}_{k}\boldsymbol{r}_{k}g+\boldsymbol{a}_{k}\boldsymbol{m}_{k}\nabla^{2}\boldsymbol{u}_{k}$

(4)

.

$$\frac{\partial}{\partial t} \langle \Phi_k \rangle V_{cv} + \int \mathbf{y}_{ks} \cdot n_s dS_{cv} = \langle B_k \rangle V_{cv}$$
(5)
(5)
(5)
(5)

flux

•

$$\left\langle \Phi_{k} \right\rangle = \int \boldsymbol{f}_{k} dV_{cv} / V_{cv} , \quad \left\langle B_{k} \right\rangle = \int b_{k} dV_{cv} / V_{cv}$$
(5)

$$\frac{\boldsymbol{f}_{k}^{n+1} - \boldsymbol{f}_{k}^{n}}{\Delta t} V_{cv} + \sum_{j} \boldsymbol{y}_{ks}^{j} \cdot \boldsymbol{n}_{s}^{j} \cdot \boldsymbol{S}_{cv}^{j} = \langle \boldsymbol{B}_{k} \rangle V_{cv}$$

$$\tag{6}$$

. SMAC

1. SMAC

가

$$\boldsymbol{a}_{g} \boldsymbol{r}_{g} \frac{\partial u_{g}}{\partial t} = F_{g} - D | \boldsymbol{u}_{g} - \boldsymbol{u}_{l} | (\boldsymbol{u}_{g} - \boldsymbol{u}_{l}) - V \left(\frac{\partial u_{g}}{\partial t} - \frac{\partial \boldsymbol{u}_{l}}{\partial t} \right)$$
(7)

가

.

.

.

가

$$\boldsymbol{a}_{l}\boldsymbol{r}_{l}\frac{\partial u_{l}}{\partial t} = F_{l} + D\left|u_{g} - u_{l}\right|\left(u_{g} - u_{l}\right) + V\left(\frac{\partial u_{g}}{\partial t} - \frac{\partial u_{l}}{\partial t}\right)$$
(8)

$$, D V$$
 . ,

$$\left|u_{g}-u_{l}\right|$$

$$(D_b = D | u_g - u_l |)$$
 (7) (8) .

(3)

$$\boldsymbol{a}_{g} \boldsymbol{r}_{g} \frac{u_{g}^{*} - u_{g}^{n}}{\Delta t} = F_{g}^{n} - D_{b} \left(u_{g}^{*} - u_{l}^{*} \right) - V \left(\frac{u_{g}^{*} - u_{g}^{n}}{\Delta t} - \frac{u_{l}^{*} - u_{l}^{n}}{\Delta t} \right)$$
(9)

$$\boldsymbol{a}_{l} \boldsymbol{r}_{l} \frac{u_{l}^{*} - u_{l}^{n}}{\Delta t} = F_{l}^{n} + D_{b} \left(u_{g}^{*} - u_{l}^{*} \right) + V \left(\frac{u_{g}^{*} - u_{g}^{n}}{\Delta t} - \frac{u_{l}^{*} - u_{l}^{n}}{\Delta t} \right)$$
(10)

(2) (2)
$$u'_{g}, u'_{l}, p'$$

$$u_{g}^{n+1} = u_{g}^{*} + u_{g}^{'}$$
(11)

$$u_l^{n+1} = u_l^* + u_l^{'}$$
(12)

$$p^{n+1} = p + p^{\prime} \tag{13}$$

$$a_{x} \frac{u_{x}^{n+1} - u_{x}^{*}}{\Delta t} \left(= a_{x} \frac{u_{x}}{\Delta t} \right) = -C_{t} a_{x} \nabla p^{*}$$
(14)

$$a_{t} \frac{u_{t}^{n+1} - u_{t}^{*}}{\Delta t} \left(= a_{t} \frac{u_{t}}{\Delta t} \right) = -C_{2} a_{t} \nabla p^{*}$$
(15)

$$, C_{1} - C_{2} , ...,$$

(4) (14) (15) Divergence($\nabla \cdot$)

$$\nabla \cdot \left(a_{x} u_{x}^{n+1} + a_{t} u_{t}^{n+1} \right) - \nabla \cdot \left(a_{x} u_{x}^{*} + a_{t} u_{t}^{*} \right) = -C_{3} \Delta t \cdot \nabla^{2} p^{*}$$
(16)
(2) $\nabla \cdot \left(a_{x} u_{x}^{n+1} + a_{t} u_{t}^{n+1} \right) = 0$ (15) p^{*}
(16) ICCG(Incomplete Cholesky Conjugate
Gradient) solver $C_{3} - C_{4} - C_{2}$
(5) (4) p^{*} (14) (15) u_{x}^{*}, u_{t}^{*}
(6) time step
3) (void fraction)
no-slip

1)

,

2 liter/min 1.5 liter/min

.

.

,

.

.

.

3 가, 2liter/min,

가

. 4 가, 1.5 liter/min, 4 cm .

. 가

. 가 5 가, 2 liter/min, 7 cm

가 가 4 cm

가 .

. ,

. 가

· , 가가

가 . , 가 가

5.

[1] Akio Tomiyama, Isao Kataoka et al., 'Numerical solution method for incompressible multidimensional two-fluid model', , 59 , 566 , pp. 69~74, 1993.
[2] Akihiko Minato, Kazuhide Takamori et al., 'Accelerated solution method of multi-dimensional gas-liquid two-phase flow using two-fluid model', , 37 , No. 6, pp. 65~72, 1995.

 [3] Akihiko Minato, Shigeto Murata,. 'Two-dimensional analysis of discharge flow of high-pressure saturated water from orifices', Nuclear Eng & Des, v.131, pp. 25~36, 1991.

[4] Rhie, C. M., Chow, W. L. 'A numerical study of the turbulent flow past an isolated airfoil with trailing edge separation.', AIAA J., 21, pp. 1525~1532, 1983.

[5] Tobias Giese, Eckart Laurien et al., 'Experimental and numerical investigation of gravity-driven pipe flow with cavitation', Proceedings of ICONE10, Arilington, VA, April 14-18, 2002.

[6] M. Ishii, 'Thermo-Fluid Dynamic Theory of Two-Phase Flow', Eyrolles, Paris, 1975.

[7] D. A. Drew, 'Continuum modeling of two-phase flows, in: Theory of Dispered Multiphase Flow', ed. R.E. Meyer, Academic Press, NewYork, pp. 173-190, 1983.
[8] J.G.M. Andersen, Trans. Am. Nucl. Soc. 41, pp. 669~671, 1982
[9] N. Zuber, J. A. Finadlay, Trans ASME, Ser. C 87, pp. 453~468, 1965

Nomenclature

b	source (conserved quantity/m ³ s)	F_{i}	interphase drag (N/m ³)
F_{v}	virtual mass force (N/m ³)	8	gravity constant (m/s ²)
n	unit vector	р	pressure (Pa)
S_{cv}	area of control volume boundary (m ²)	t	time (s)
и	velocity (m/s)	V	added mass force coefficient
V_{gj}	drift velocity (m/s)	а	void fraction
r	density (kg/m ³)	S	surface tension (N/m)
f	density of conserved quantity	У	flux of conserved quantity
Subscr	ipts		
k	phase (g for gas, l for liquid)	S	control volume boundary
Supers	cripts		

n time step

	5	1	1	-	-	-	-	-	_	1	-	4	1
	à	1	-	1	-	-	-	-	-	~	~	1	1
ř	1	1	1	1		-	-	-		~	5	1	1
1	1	1	1	1	2	÷	12	~			1	1	1
ï	1	1	1	5		F	1		4	5	÷	ţ	5
1	1	1	1	1		1			1	÷.	1	ł	- 5
į.	E	1	1	1			1.5	1	8 A	- ¢.	1	1	1
ì	i.	I.	1	i.	1		8	1	5.6	1	T.	t:	1
1	i.	L	1	1		8	1	1	7	1	1	t i	- 1
ì	1	ŝ	1			1	Ç,	÷,	1	2. 7	1	< 1)	1
ì		1			1	1	1	÷ 9	2.2	1	1	1	1
1	ŝ	1	1			4	2	1	2	1	-p	1	1
ì	à	÷	1		4	13	1	1	2	2	1	1	1
í	÷					1	1.2	1	3 4	2	- 7	1	1
1	ć					1	1	3	1		7	1	1
				1			1 2	5	1	5 2	i g	\tilde{i}	1
1				1			1 2	1	1		ų,	2	1
				-		12	12	12	1	2	ŝ	2	5
	- 3	1	13						6 8	1.5		: 8	

٤.	-	-	-	-	-	-	-		~	~	~	~
	12	22	-	_	-	-	~	1	1	1	1	1
2	14		-	12	-	~	~	~	5	\mathbf{N}	1	1
ï	7	1	Ö		1		κ.	N	X	S.	1	1
,	1		1		4		Υ.	1	÷ e	÷	1	1
į	1	्रि	Ċ,	2	1	ι,	÷ (;	Ň	5	1	1	1
2		۰,	, ŝ		2	į,	1	ŝ	N.	1	1	1
	1		8		1	1	1	8	1	10	1	t
			1	1	1	1	1	÷,	1	7	- E	t
		ŝ	8	13	1.2	2	1		1	-x	1	1
		2	2	1.0	3	e y	1	9	3	7	$^{-1}$	1
		2	3	1	1	8	1	÷ ý	2	1	\tilde{J}	1
ì	1		1			2	1.2	i ĝ	2	7	ž	t
č				1		1 4	1	1	2	2	7	1
ः स	् २ - २					1	1	1		3	- 7	1
ŝ	1			1			12		18	1	1	1
00 • 11	 	: 3) s	1	i s	2	- 92	2
ŝ							12		12			,
20	- 2						1	1		1	12	2

(2.5)

•			-	~	1	1	1	1	1	1	1	×.	2
	•	•		5	L.	1	1	1	1	2			
		- 03	1	1	١	t	1	1	1	1	~	-	.,
r.	-	6	1	1	1	1	1	1	1	1	- 20		
1	-0	i.	1	T	1	1	1	1	t	1			1
į.	-0	L.	1	1	1	1	1	ł	ţ	10	23		4
	E2	E.	- Ê	1	1	1	1	1	1	50	80	~	
		6	10	١.	£.	١	1	1	1	x	43	-	ş
2	-3	6	τ.	1	١	٢	1	1	1	ς.	-	40	2
Ð	÷	61	1	ĸ	1	1	١	1	5				
į.					¢	5	1	٢	X	N	5	1	5
	3	Į.	1	23	2	C	١	í.	1	N.	5	٢	3
			2		2	2	ŧ.	¥	5	10	٩.	١.	١
		į.		2	1	ŝ	,	5	ŵ.	i	1	1	1
1				2	3	2	ŝ,	2	2	2	\overline{i}	1	1
			-	2		2	2	-	2	2	12	\mathbf{r}	1
					2	2	2	2	2	2	3	1	1
			1		2	2	2	Ū.	2	÷.	3	1	1
			13	3	22			13	- 22	\sim	3	\sim	2

<			-	-	+	-	10	3	8	÷	*		3
	4	÷		•	•	8	Ţ	٢		-			ą
,	2	÷.	- 2	÷	52	1,	1	1	1		\sim	x	ġ
1	3			80	95	ŧ	1	1	2			$\hat{\mathbf{v}}$	8
1	F	ñ	83	10	1C	t	t	t	1	\mathbf{x}	\mathbf{x}	÷	1
4	4	i.		10	15	1	ł	1	E.	82	2	1	1
4		ŝ		¢,	£.,	12	١	J.		*	2	1	,
1	÷	1	÷.	•	Υ.	x.	5	X	~	•		1	ì
4	F	+	22	-	•	×	٩.	•	•	~	-		,
1	٢	÷	1			*	~	1	*				
1	4	i	1	1	•	•	~	٩.	*	~	-		
1	٨	1	1	4	0	÷	•	×.	•	•	\sim	\$2	3
1	٠	i,			~		28	ŝ,	£	82		5	3
,	•				4	2	2	ì.	x	T_{c}		4	3
ē	+				3	4	,	1	×	\tilde{r}		1	Э
i.	÷				۷	4	2	1	-	+	ੁ	$\hat{\mathbf{r}}$	3
	-		-	2	ŝ	2	4	2	9		9	$\langle \mathbf{r} \rangle$	ă
	•	•		0	4	4	-	1	-	3	2		2
	125		1.2		- 53	2	1	- 22	1	- 22	- 33	2	- 3

4.4 cm

(1.7)

÷	÷	1 m	s												_
			\$	٩.	1	١,	1	2	×	-	-		~		
	83	-	e	1	1	1	1	1	1	1	~	4	-	2	
	-	8	10	1	1	1	1	1	1	- 30	-		-	145	
	-	20		1	1	1	1	T	5	-		2		- 123	
	2	2	è	1	1	t	1	1	~	~	2	2	-	- 22	
	25		t	1	1	1	1	~	~	-	~	2		÷.	
	20	10	12	1	1	1		~				- 20	- 21	- 10 - 10	
			1	1	t	1						40		3	
				1	4	~	~				20	100	-		
				~	~	•									
						~						~	~		
		-20		- +0 - 105									2	1	
			1	- 40						200			1	1	
	8	0	- 63	· •••	*0 		10	- 25	- 10	N	- 22	- 45 - 10	1	÷	
		×.	~	-	-	- 25	~	1	1	1	<i>a</i> t.	с 		÷	
	<u>.</u>	-	-		~	1	1	~	1	1	1	1	ſ	1	
	+1	-	-	-	1	1	2		20	~		1	3	5	
		2	2	1	~	0	1		,		1	5	1	1	
		-	្	-		2	-	-	1	-	-	2	1	1	
	10	22	2	<u>,</u>	-	-	2		9	2	-	2	>	1	

2	+	-	-	~	1	1	1	-	-	-	~	\sim	2
,	×		-	L.	٢	1	2	×.	-	-	5	1	ŝ
Ē.	C	8	. 33	1	1	1	×	~	-	~	ŝ,	×.	1
ŝ	ŝ	-	2	1	1	1	Z	23		\mathbf{c}	î.	Ē	1
Ç.	ŝ		1	1	1	Į.		÷ŝ	\hat{z}	23	1	,	1
į.	ç,		X	ſ	1	Ţ.	~	24	~	\gtrsim	,		,
23	i.		t	1	у.	•	-	-	1	2.	2	1	2
ß	12		- £.	13	*		-	-	-		\mathcal{D}		,
ē	4	5	Ŷ.	×	~	-	-	-	1	2	\mathbf{x}	\mathcal{Q}	3
1		•	-	-	-	-							
į	r		-	-	-	-	-	-	-	-	-	-	\$
1	1		-	-	-	-	-	~	~	•	2	1	١
L	1	Ĩ.	i.		ir.	-	-	-	-		\sim	3)
5	1	ŝ,		4		ХS		10	2	18	28	Т	1
5	1	1		2	2	3	2	1	\mathcal{D}	2	32	1	1
5	Ň				2	2	-	\simeq	\simeq	-	2	ż	Э
5				2	0	ੁ	2	2	2	9	2	2	ŝ,
			-	2	2	0	0	2	0		2	1	S
3	1	1	1	1	0	1	0	12	12	1	15	÷.,	5

5.7 cm

(1.4)