Corrosion and Microstructure of the Advanced Fuel Cladding Tubes with the Final Annealing Temperature

Abstract

In order to evaluate the effects of final annealing temperatures on characteristics of corrosion, recrystallization and microstructure in an advanced cladding tube (Zr-0.2Nb-1.0Nb-FeCrCu), the final treatments were carried out at the temperature range of 450 to 580°C for 2.5 hours. In addition, the microstructures and hardness with the phase change were investigated after the final-anneal at the α , α + β , and β phase regime. While the corrosion resistance of the alloy did not have a difference with the variation of final annealing temperatures in the conditions of PWR simulated corrosion Loop and 30 ppm lithiated solution at 360°C, the weight gains after the 260-day-corrosion test in 400°C steam showed the increasing trends with the increase of final annealing temperatures. Recrystallization of this alloy started at the targe of 505~600 °C. The specimen annealed in stress relief condition revealed the disappearance of dislocations, which were introduced in the cold-working stage, but recrystallized locally in several regions. Most of precipitates were found to be hcp ZrCr₂ (C14 Lavers type) and some different precipitates (tetragonal Zr₂Fe, fcc Zr₃Fe) were occasionally observed. The phase transformations of the alloy were occurred at 752°C and 883°C for α to α + β and α + β to β phase transformation, respectively.

10

9.5mm tube • 가 20 mm $450 \sim 600^{\circ}C$ 360°C Loop , 360 °C . LiOH (70 ppm) 400°C . , H_2O 150 ASTM G2 . vol.%, H_2SO_4 150 vol.%, HNO_3 200 vol.%, HF 40 vol% , 3 가 . 가 1 가 가 TEM . , , , , , 450~600°C . 3.

3.1

	1 Zr-0.2Nb-10.Sn-FeCrCu		PWR		Loop
180		가		. 18	30
	Zr-0.2Nb-10.Sn-FeCrCu		가	32~35 mg/c	dm²
					가
			PWR	Loop	
300					

가 2 400°C 260 , Loop 가 가 가 505°C 가 가 가 , 505°C 가 가 . Zr-0.2Nb-10.Sn-FeCrCu 가 400°C

·	3	360°C 70 p∣ 7	om LiOH		130 . Loc	op	
가	360°C	70 ppm LiOł	4				
3.2	2						
	4	Zr-0.2Nb-1	0.Sn-FeCrC	Cu			
		450°C	600°C				
		가		(c/w	, cold-worke	d)	2
H_k		450°C	2.5				
	208	H _k			가 가		
	505	5°C	180 H _k			505°C	
7r	0.2Nb	10 Sp E20r0			450 470°C		
- اے 505°C	0.2ND-		u 505~600 °C)	450~470 C		
						, 490°C	
			50	5°C			
	. 5	20°C			가	(520°C)	
					5		
			,	6	TEM		
470°C							
						470°C	
	2						
3.3	ა ი ^ი ი				590°C		
47	0-0				580-0		
							•

- ,

,

C14 Lavers type hcp ZrCr₂ tetragonal Zr₂Fe fcc Zr₃Fe . .

가 Nb, Fe, Cr, Cu

4/11

215

•

.

.

가

600°C 1

		Zr-0.2Nb-10.Sn-FeCrCu	hcp ZrCr ₂
		. 가	
	가	(69 → 80 nm).	number
density		가 가	. 7
470°C		Zr-0.2Nb-10.Sn-FeCrCu	

•

3.4

DSC (differential Zr-0.2Nb-10.Sn-FeCrCu scanning calorimetry) 8 . 752°C α β 883°C β . (α, α+β, β) 690°C, 870°C, 1100°C , α . , α+β β 2 α . , β Martensite . 가 가 β 가 , Martensite β . Zr-0.2Nb-10.Sn-FeCrCu LOCA . .

- 4.
- 1) Zr-0.2Nb-10.Sn-FeCrCu 360°C Loop 70 ppm LiOH 7 , 400°C 7 7 7
- 2) Zr-0.2Nb-10.Sn-FeCrCu 450~470°C 505°C 505~600 °C

.

.

3)

C14 Lavers

.

type hcp ZrCr ₂ , tetragor	nal Zr ₂ Fe fcc Zr	₃Fe
---------------------------------------	-------------------------------	-----

4) Zr - 0.2Nb - 10.Sn - FeCrCu 752°C α β 883°C β .

•

.

5.

1)	/	: KAERI/RR	-2020/99,
	, (2000).		
2)	3	3	2002
	, (2002).		
3)	J. M. Kim, et al., "Optimization of ma	nufacturing process for high	nly corrosion
	resistant Zr alloys ", Metals and Mater	ials, 6(2) (2000) 139.	
4)	J. M. Kim, et al., " Correlation of heat	treatment and corrosion be	havior of Zr-Nb
	Sn-Fe-Cu alloys ", J. Mat. Proc. Tecl	n., 104 (2000) 145.	
5)	, K1, K2		
	2002	, (2002).	
6)	, K1, K2		
	2002	, (2002).	

Table 1. Corrosion conditions of the 1st sample cladding tubes

Items	Temperature	Pressure	Corrosion solution
	360°C	2750 psi	pH = 6.8 at 25⁰C
260°C 000			DO < 5 ppb
360 C L00p			DH : < 1 ppb
			Conductivity : ~30 S/cm
360°C LiOH	360°C	2750 psi	[Li ⁺] = 70 ppm
400°C Steam	400°C	1500 psi	Pure steam

-

,

,

(b)

Fig. 1 Corrosion properties of Zr-0.2Nb-1.0Sn-FeCrCu cladding tubes in PWR simulated loop condition

(b)

Fig. 2 Corrosion properties of Zr-0.2Nb-1.0Sn-FeCrCu cladding tubes in 400°C steam condition

(b)

Fig. 3 Corrosion properties of Zr-0.2Nb-1.0Sn-FeCrCu cladding tubes in 360°C 70 ppm LiOH condition

Fig. 4 Recrystallization of Zr-0.2Nb-1.0Sn-FeCrCu claddings

Fig. 5 Optical microstructures of Zr-0.2Nb-1.0Sn-FeCrCu claddings with final annealing temperature; (a) C/W, (b) 470°C, (c) 520°C

Fig. 6 TEM microstructures of Zr-0.2Nb-1.0Sn-FeCrCu claddings with final annealing temperature; (a) 470°C, (b) 520°C

Fig. 7 Precipitate distribution of Zr-0.2Nb-1.0Sn-FeCrCu claddings with 470°C final annealing temperature

Fig. 8 Phase transformation of Zr-0.2Nb-1.0Sn-FeCrCu claddings