Vibration Characteristic Analysis for HANARO Reactor Structure

150

17.7Hz

34.9Hz . AECL 17.46Hz

Abstract

3

The objective of this study is to investigate the vibration characteristic of the HANARO reactor structure. For this purpose, the in-air and in-water finite element models of the reactor structure were developed and their modal analyses were carried out. The fundamental natural frequency of the in-water reactor structure was obtained as 17.7Hz that is approximately the half of the natural frequency of the in-air reactor structure, 34.9Hz. This natural frequency agree well with the analysis result(17.46Hz) of the AECL. For investigating the dynamic correlation between the fuel assembly and the reactor structure, the in-water reactor model including the fuel assemblies was developed, and its modal analysis was performed. The analysis results demonstrate that there is no resonance between the fuel assemblies and the reactor structure. The developed 3-D model of the in-water reactor structure will be used as a basic model for the dynamic characteristic and stress analysis when it is necessary to modify the design of the reactor structure.

1.

(Hi-flux Advanced Neutron Application Reactor) 30MW 7

,

Fig. 1

(inlet plenum), (grid plate), (reflector vessel)
(chimney), (flow tube) .

1

(inlet nozzle)

(fluid induced vibration)

가

. AECL [1]

[2] [3]

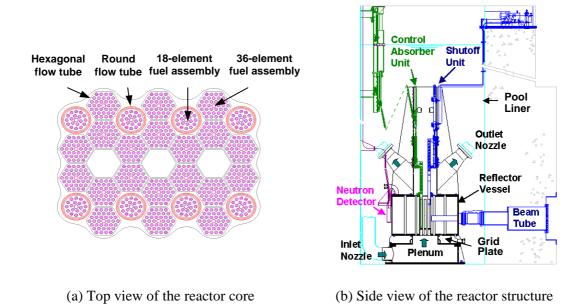


Fig. 1 Reactor Structure of HANARO

3-D ,

[3]

2.

2.1. 3-D

, , ,

(solid model) , ANSYS[4] SOLID45, SHELL63 BEAM44

(node)

Fig. 2 3

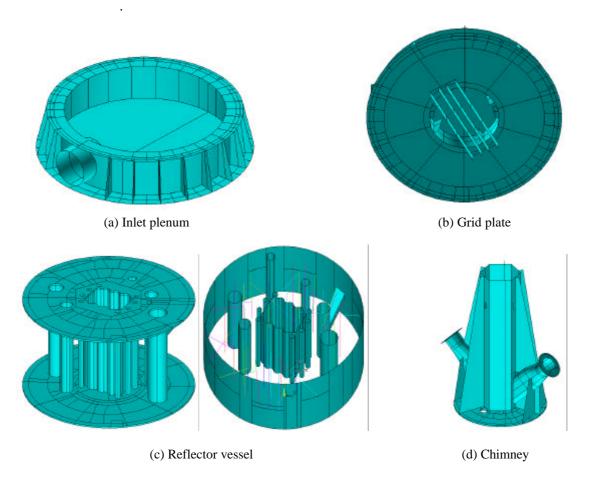


Fig. 2 Solid models of the reactor structure

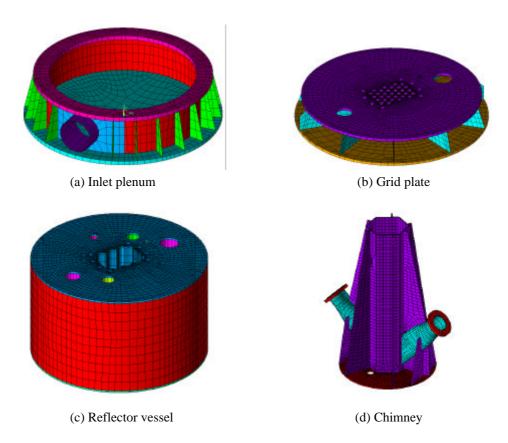


Fig. 3 Finite element models of the reactor structure

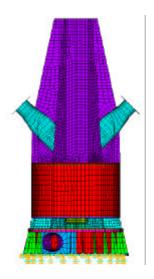


Fig. 4 Finite element model of the reactor structure

2.2

ANSYS

3-D ,

Table 1 80

, Fig. 5

Fig. 5(a)

(fundamental mode) (bending mode)

34.9 Hz . Fig. 5(b)

2 37.1 Hz ,

. Fig. 5(c)

3 (shell) 1 , 68.4 Hz , Fig. 5(d) 4 70.8 Hz (shell) .

Table 1 Natural frequencies for the in-air reactor structure

Mode	Frequency (Hz)						
1	34.93	21	151.65	41	234.41	61	307.07
2	37.14	22	153.39	42	236.40	62	327.20
3	68.39	23	159.64	43	238.31	63	328.17
4	70.79	24	167.45	44	247.73	64	332.67
5	79.34	25	178.52	45	249.01	65	339.50
6	88.07	26	178.93	46	251.72	66	345.24
7	92.79	27	181.91	47	254.64	67	345.80
8	93.47	28	186.15	48	256.87	68	349.86
9	99.22	29	188.79	49	258.05	69	353.42
10	102.09	30	192.08	50	261.33	70	357.79
11	103.27	31	193.22	51	263.81	71	368.42
12	110.83	32	202.43	52	267.04	72	370.27
13	115.13	33	218.35	53	271.69	73	375.88
14	118.58	34	218.57	54	271.79	74	378.08
15	122.52	35	220.45	55	277.34	75	380.94
16	127.41	36	224.96	56	279.28	76	382.62
17	132.46	37	227.14	57	285.41	77	389.93
18	142.07	38	230.02	58	288.11	78	392.48
19	144.83	39	231.58	59	295.56	79	397.27
20	148.88	40	232.44	60	305.97	80	400.60

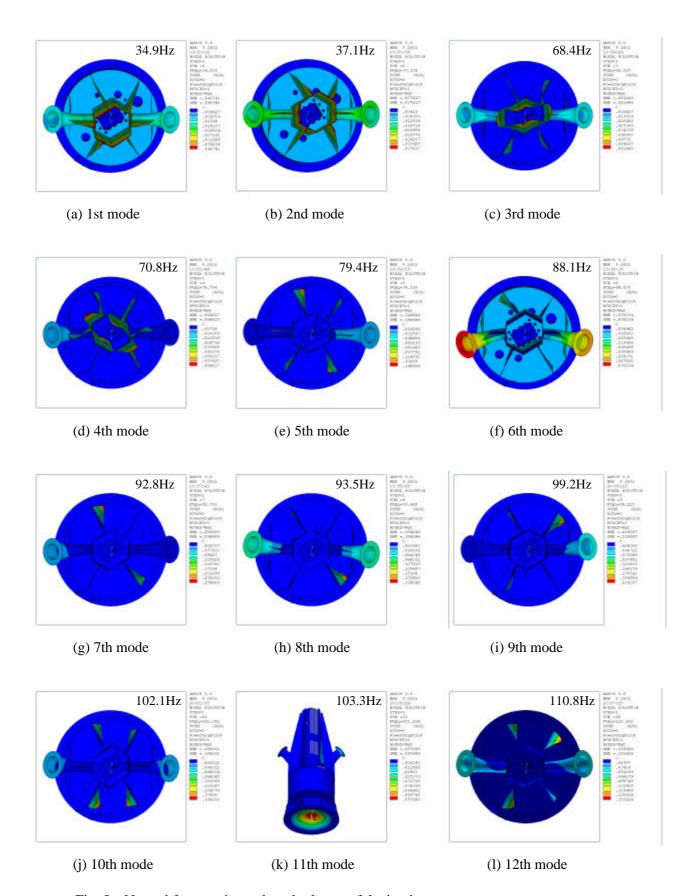


Fig. 5 Natural frequencies and mode shapes of the in-air reactor structure

3.

3.1. 3-D

. 가 [5~7]. 2.1 가 가 . 가 AECL [1]

Table 2

Table 2 Hydrodynamic mass properties of the in-water reactor structure

Component	No. of items	Direction	Hydrodynamic mass (kg)	
Chimney column	1	X	2472.7	
Chilling Column	1	Z	4009.9	
Chimney base plate	1	у	1290.47	
Chimney four stiffeners	4	X	963.21	
Chilling four sufferiers	4	Z	963.21	
Chimney two stiffeners	2	Z	386.95	
Chimney cross stiffeners	2	X	633.4	
	_	X	393.93	
Chimney outlet nozzle	2	у	393.93	
		Z	557	
Reflector vessel outer shell	1	X	8426.64	
	1	Z	8210.62	
Reflector vessel lower plate	1	у	1929.92	
Reflector vessel upper plate	1	у	1886.27	
Reflector vessel inner shell	1	X	505.98	
		Z	485.36	
Grid plate lower plate	1	у	834.67	
Plenum lower plate	1	у	1013.76	
Plenum upper plate	1	у	1155.8	
Plenum outer shell	1	X	4030.99	
	Plenum outer shell 1		3851.67	
Grid plate circular wall	1	X	310.36	
Cite Pinte Citeman wan	-	Z	302.57	
Water in IP1-IP14, IP16, IP17	16	x, y, z	3.72 (each)	
Water in IP15	1	x, y, z	3.72	
Water in OR1-OR8	8	x, y, z	3.72 (each)	
Water in HTS	1	x, y, z	10.35	
Water in NTD1	1	x, y, z	50.1	
Water in NTD2	1	x, y, z	33.5	
Water in CNS	1	x, y, z	26.5	
Water in LH	1	x, y, z	23.3	

x , z y

| First | State | Stat

Fig. 6 Hydrodynamic masses of the reactor structure

3.2

가 .

Table 3 Natural frequencies for the in-water reactor structure

Mode	Frequency (Hz)						
1	17.67	21	78.51	41	112.15	61	164.51
2	21.26	22	80.80	42	113.61	62	167.99
3	37.03	23	82.47	43	114.08	63	170.04
4	37.79	24	83.44	44	115.29	64	170.93
5	40.91	25	84.22	45	117.89	65	175.36
6	46.41	26	86.91	46	123.97	66	176.87
7	47.68	27	88.83	47	127.63	67	179.75
8	48.94	28	90.39	48	129.41	68	181.71
9	50.48	29	91.74	49	134.84	69	184.51
10	51.43	30	93.87	50	136.37	70	186.68
11	52.49	31	94.76	51	137.35	71	187.62
12	56.41	32	95.41	52	140.95	72	192.10
13	59.85	33	96.47	53	148.63	73	194.95
14	60.54	34	97.23	54	149.85	74	196.89
15	62.74	35	98.46	55	152.34	75	197.65
16	65.98	36	100.85	56	152.39	76	202.25
17	71.29	37	103.74	57	155.14	77	202.79
18	73.79	38	109.48	58	157.41	78	205.62
19	75.00	39	110.18	59	161.03	79	208.86
20	75.82	40	111.66	60	161.99	80	209.50

Table 4 Natural frequencies for the in-water reactor structure by AECL[1]

Mode	Frequency(Hz)
1	17.46
2	18.67
3	32.00
4	40.55
5	42.46
6	45.37
7	48.99

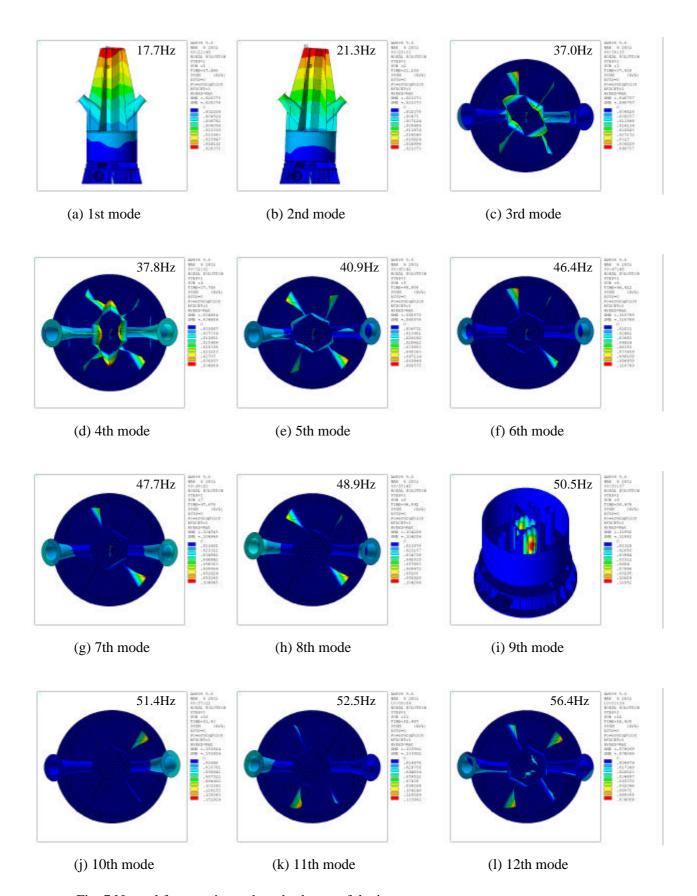
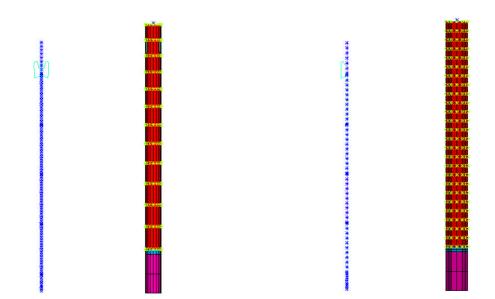


Fig. 7 Natural frequencies and mode shapes of the in-water reactor structure

가 , . . .


4.1.

2 가 . [3] 2-D 3-D , [3]

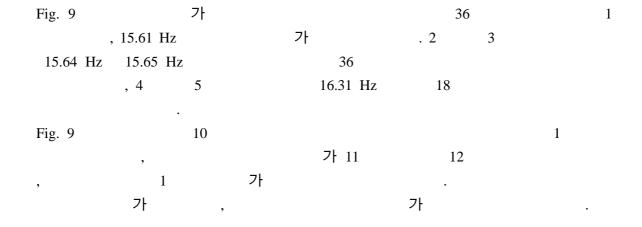
18 36

, 18 2 (C4, S3) 36 3 (CT, R7, R14)

Fig. 8 (a) 18 , Fig. 8 (b) 36 [3].

(a) 18-element fuel assembly and round flow tube (b) 36-element fuel assembly and hexagonal flow tube

Fig. 8 Finite element models of the in-water fuel assemblies and flow tubes


4.2.

ANSYS[4]
. Fig. 9 24
, Table 5 40

Fig. 9

Table 5 Natural frequencies of the in-water reactor structure with fuel assemblies

Mode	Frequency (Hz)	Remark	Mode	Frequency (Hz)	Remark
1	15.613	1st bending of 36-element fuel	21	34.618	2nd bending of 36-element fuel
2	15.640	1st bending of 36-element fuel	22	34.929	2nd bending of 36-element fuel
3	15.654	1st bending of 36-element fuel	23	37.028	1st bending of reactor column
4	16.305	1st bending of 18-element fuel	24	37.786	1st bending of reactor column
5	16.314	1st bending of 18-element fuel	25	40.909	1st bending of reactor column
6	16.511	1st bending of 36-element fuel	26	46.411	1st bending of reactor column
7	16.523	1st bending of 36-element fuel	27	47.675	1st bending of reactor column
8	16.534	1st bending of 36-element fuel	28	48.942	1st bending of reactor column
9	16.677	1st bending of 18-element fuel	29	50.478	bending of inner shell
10	16.681	1st bending of 18-element fuel	30	51.429	1st bending of reactor stiffener
11	17.666	bending of reactor assembly	31	52.486	1st bending of reactor stiffener
12	21.256	bending of reactor assembly	32	56.400	1st bending of reactor stiffener
13	29.273	2nd bending of 18-element fuel	33	58.242	3rd bending of 36-element fuel
14	29.545	2nd bending of 18-element fuel	34	58.503	3rd bending of 36-element fuel
15	32.160	2nd bending of 18-element fuel	35	58.814	3rd bending of 36-element fuel
16	32.372	2nd bending of 18-element fuel	36	59.848	3rd bending of 36-element fuel
17	32.594	2nd bending of 36-element fuel	37	60.538	2nd bending of reactor stiffener
18	32.688	2nd bending of 36-element fuel	38	62.735	bending of inner shell
19	32.783	2nd bending of 36-element fuel	39	64.647	3rd bending of 18-element fuel
20	34.463	2nd bending of 36-element fuel	40	64.894	3rd bending of 18-element fuel

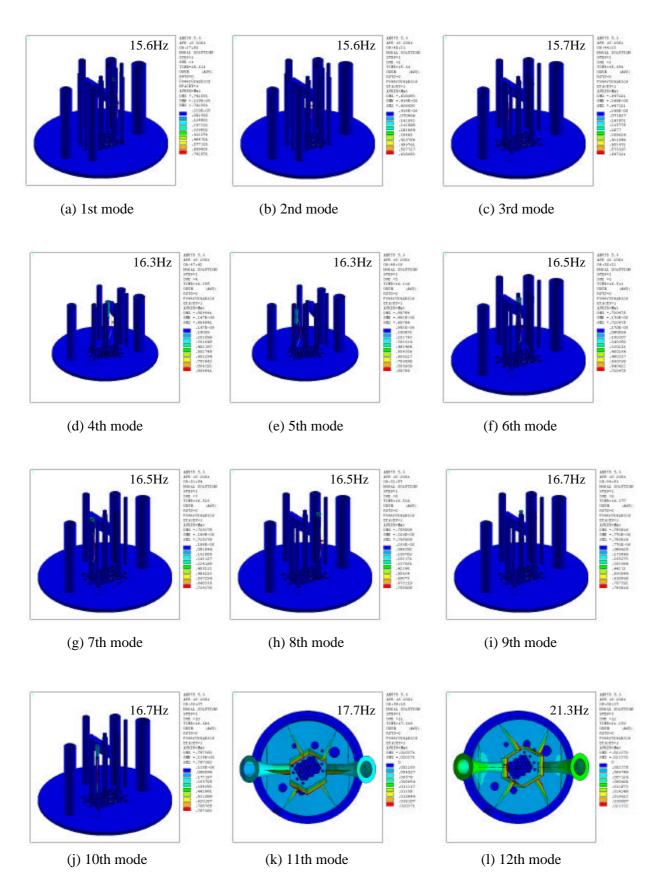


Fig. 9 Natural frequencies and mode shapes of the in-water reactor structure with fuel assemblies(continued)

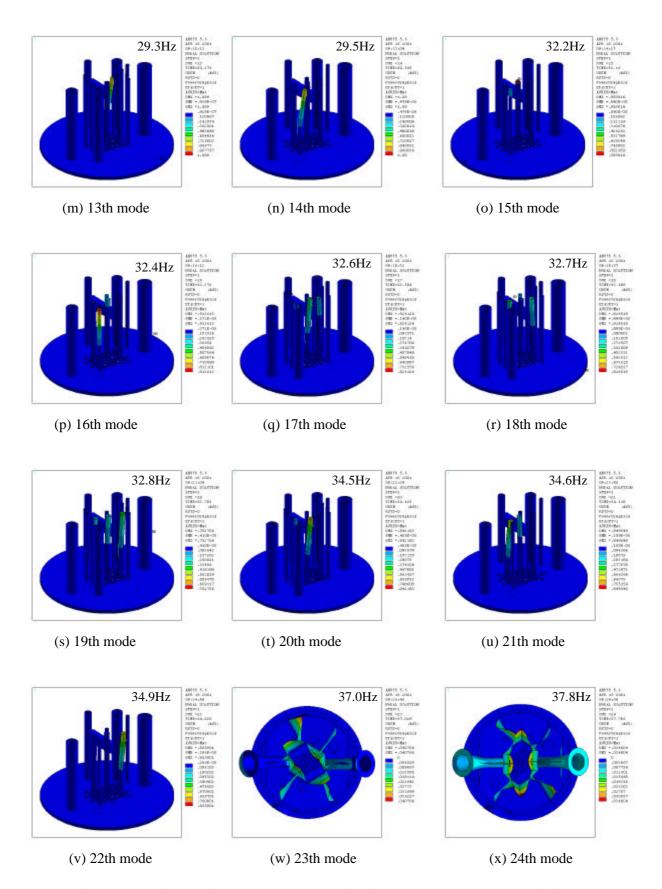


Fig. 9 Natural frequencies and mode shapes of the in-water reactor structure with fuel assemblies

5. 1) 2) 3-D 가 34.9 Hz 3) 3-D 가 17.67 Hz **AECL** 1 4) 10 1 가 5) 3 [1] K.C.Chow, "Seismic Analysis Report of the Reactor Structure Assembly", AECL T.D.S. SR-37-31200-002, Rev1, 1991. [2] 2001 , 2001. [3] 2002 , 2002. [4] ANSYS 5.7 User's Manual, ANSYS, inc. 가,"

[6] S.S. Chen and H. Chung, "Design Guide for Calculating Hydrodynamic Mass; Part I: Circular Cylindrical Structures," ANL-CT-76-45, Argonne National Laboratory, Argonne, IL, 1976.

, 2000.

2000

[7] H. Chung and S.S. Chen, "Design Guide for Calculating Hydrodynamic Mass; Part II: Non-Circular Cylindrical Structures," ANL-CT-78-49, Argonne National Laboratory, Argonne, IL, 1978.