Vibration Characteristics of the KSNP Fuel Assembly with Newly Developed Top and Bottom End Pieces.

Abstract

가

Nuclear fuel assembly is exposed to various exciting sources such as fluid induced vibration, circulating pump, earthquake, and loss of coolant accident. To maintain its integrity under these vibratory circumstances, vibration characteristics of fuel assembly should be thoroughly understood, and should be well reflected into fuel assembly design. In this study, the fuel assembly for Korea Standard Nuclear Plants (KSNP) is modeled as a uniform beam with reactor end condition and, based on the model, the vibration characteristics of the fuel assemblies with not only conventional upper and lower end fittings but also newly developed

ones are evaluated by using the frequency equation which was derived by Fourier Sine series. In the case of introducing newly developed upper and lower end fittings to the fuel assembly for KSNP, it is expected that natural frequency of the fuel assembly be lowered a little due to the boundary condition change, but the difference is negligible.

1. , 가

가 · ,

가

. ,

, . , 가 ,

. ,

,

, 가 Fourier 가 ,

. ,

가 가 , 가

가

2.

(1) .

$$EI\frac{\partial^4 w(x,t)}{\partial x^4} + \mathbf{r} A \frac{\partial^2 w(x,t)}{\partial t^2} = 0$$
 (1)

, EI

w(x,t), r, A

 $w(x,t) \tag{2}$

$$w(x,t) = \mathbf{y}(x) \quad Cos \ \mathbf{w}t \tag{2}$$

 $, \mathbf{y}(x)$

Cosine $\mathbf{y}(x)$ Fourier Sine Sine

$$y(x) x = 0 x = L (3)$$

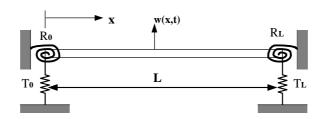
$$\mathbf{y}(x) = \begin{cases} \mathbf{y}_0 & , x = 0 \\ \mathbf{y}_L & , x = L \\ \sum_{m=1}^{\infty} A_m \sin \frac{m\mathbf{p} x}{L} & , 0 < x < L \end{cases}$$
 (3)

Fourier Stoke's Transformation

> [1]. (1) (4)

$$w(x,t) = \sum_{m=1}^{\infty} \frac{2}{\mathbf{a}_{m}^{3} L} \frac{\mathbf{w}_{n}^{2}}{\mathbf{w}^{2} - \mathbf{w}_{n}^{2}} \left\{ \left(\mathbf{y}_{0}^{"} - (-1)^{m} \mathbf{y}_{L}^{"} \right) - \mathbf{a}_{m}^{2} \left(\mathbf{y}_{0} - (-1)^{m} \mathbf{y}_{L} \right) \right\} Sin \ \mathbf{a}_{m} x \ Cos \mathbf{w} t$$
 (4)

$$\mathbf{a}_{m} = \frac{m\mathbf{p}}{L}$$


$$\mathbf{y}''(0) = \mathbf{y}_{0}'' \qquad , \quad \mathbf{y}''(L) = \mathbf{y}_{L}''$$

$$A_{m} = \sum_{m=1}^{\infty} \frac{2}{\mathbf{a}_{m}^{3}L} \frac{\mathbf{w}_{n}^{2}}{\mathbf{w}^{2} - \mathbf{w}_{n}^{2}} \left\{ \left(\mathbf{y}_{0}'' - (-1)^{m} \mathbf{y}_{L}'' \right) - \mathbf{a}_{m}^{2} \left(\mathbf{y}_{0} - (-1)^{m} \mathbf{y}_{L} \right) \right\}$$

$$\mathbf{w}_{n}^{2} = \frac{EI}{\mathbf{r}^{A}} \mathbf{a}_{m}^{4}$$

1 ,

.

1.

$$T_0 w_0 = -EI \frac{\partial^3 w}{\partial x^3}$$
, $R_0 \frac{\partial w}{\partial x} = EI \frac{\partial^2 w}{\partial x^2}$, at $x = 0$ (5), (6)

$$T_L w_L = EI \frac{\partial^3 w}{\partial x^3}$$
, $R_L \frac{\partial w}{\partial x} = -EI \frac{\partial^2 w}{\partial x^2}$, at $x = L$ (7), (8)

$$T_0$$
 T_L $x = 0$ $x = L$, R_0 R_L

$$(5),(6),(7),(8)$$
 (4) (9)

•

$$[S_{ij}] \{ \mathbf{y}_{0}^{"}, \mathbf{y}_{L}^{"}, \mathbf{y}_{0} / L^{2}, \mathbf{y}_{L} / L^{2} \}^{T} = \{0\}, _{(i, j=1, 2, 3, 4)}$$
(9)

. ,

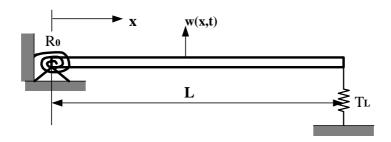
$$\left| S_{ij} \right| = 0, \quad (i, j = 1, 2, 3, 4)$$
 (10)

Α .

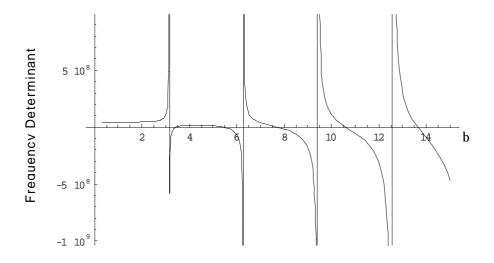
3.

3.1

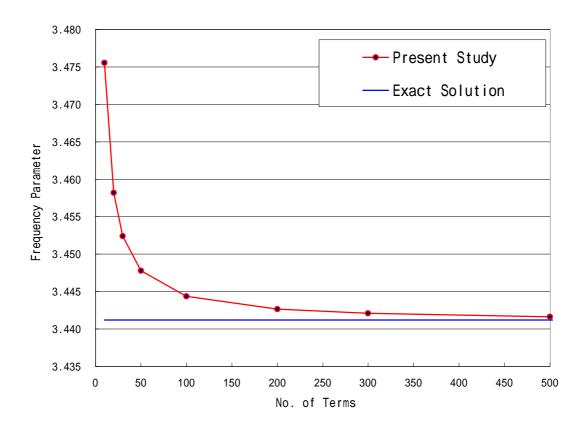
. , 가


(S-F Beam)

가 .


3 (frequency parameter) . 1 1 2 ,

4


, 100

2.

3. S-F Beam

4. S-F Beam

1. S-F Beam

No. of Terms	1 st Mode
10	3.47554
20	3.45817
30	3.45241
50	3.44781
100	3.44437
200	3.44265
300	3.44208
500	3.44162
1000	3.44128
Exact Solution [2]	3.441219

3.2

5

16x16 236 , 1 , 11

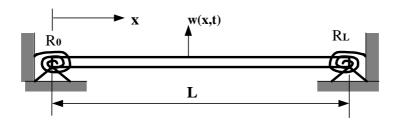
가

[3]. 6

가

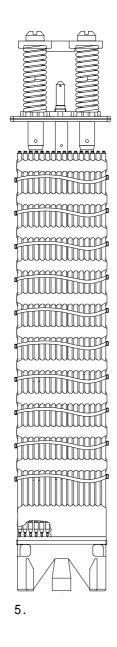
 $\overline{R}_0, \overline{R}_L$

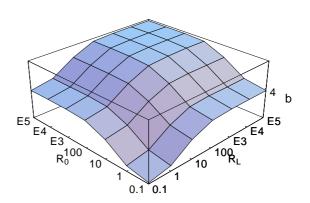
 $\overline{R}_0, \overline{R}_L$ 가 2 1

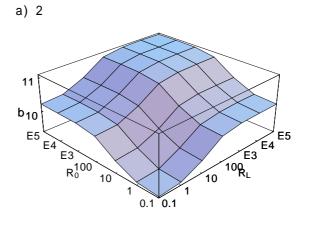

3 3 7

. 2 7

1~100 가 . ,


2.


			1st Mode	Frequency P	arameter		
\mathbf{R}_0	$ m R_L$						
	0.1	1	10	100	1000	10000	100000
0.1	3.172	3.288	3.684	3.916	3.951	3.955	3.955
1	3.288	3.399	3.787	4.018	4.053	4.057	4.057
10	3.684	3.787	4.169	4.412	4.450	4.454	4.454
100	3.916	4.018	4.412	4.674	4.715	4.720	4.720
1000	3.951	4.053	4.450	4.715	4.757	4.762	4.762
10000	3.955	4.057	4.454	4.720	4.762	4.766	4.767
100000	3.955	4.057	4.454	4.720	4.762	4.767	4.767
	2nd Mode Frequency Parameter						
\mathbf{R}_0				\mathbf{R}_{L}			
	0.1	1	10	100	1000	10000	100000
0.1	6.296	6.361	6.699	7.030	7.092	7.099	7.099
1	6.361	6.425	6.758	7.088	7.150	7.157	7.158
10	6.699	6.758	7.078	7.409	7.473	7.480	7.480
100	7.030	7.088	7.409	7.755	7.822	7.830	7.831
1000	7.092	7.150	7.473	7.822	7.891	7.899	7.900
10000	7.099	7.157	7.480	7.830	7.899	7.906	7.907
100000	7.099	7.158	7.480	7.831	7.900	7.907	7.908
	3rd Mode Frequency Parameter						
\mathbf{R}_0	$ m R_L$						
	0.1	1	10	100	1000	10000	100000
0.1	9.427	9.471	9.753	10.137	10.222	10.231	10.232
1	9.471	9.515	9.795	10.177	10.261	10.282	10.283
10	9.753	9.795	10.066	10.452	10.542	10.552	10.553
100	10.137	10.177	10.452	10.849	10.943	10.953	10.954
1000	10.222	10.261	10.542	10.943	11.038	11.049	11.050
10000	10.231	10.282	10.552	10.953	11.049	11.060	11.061
100000	10.232	10.283	10.553	10.954	11.050	11.061	11.062


6.

a) 1

F5 E4 E3 R₀ 100 10 100 R_L E5 E4

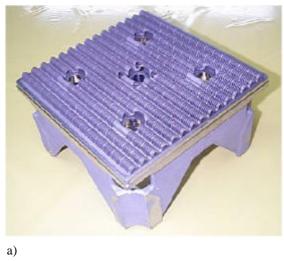
a) 3 7. 가 8

.

가 , 25% 가 [4].

, 25%

, 25%


[5]. 4 3 . . , Fourier


 50
 ,
 가
 가

 가
 .

, 가 가

b)

8. Full Size

3.

\overline{R}_0	4	4
\overline{R}_L	12	9
\overline{T}_0	10^{6}	10^{6}
\overline{T}_L	10^{6}	10^{6}

4.

End Condition						
	1 st Mode	2 nd Mode	3 rd Mode	1 st Mode	2 nd Mode	3 rd Mode
Pinned Condition	3.142	6.283	9.424	3.142	6.283	9.424
Reactor Condition	4.025	6.949	9.961	3.974	6.890	9.902
Fixed Condition	4.767	7.908	11.062	4.767	7.908	11.062

4.

가

가

, 가 가

- 1. H.K. Kim and M.S. Kim, "Vibration of Beams with Generally Restrained Boundary Conditions using Fourier Series," Journal of Sound and Vibration, 245(5), pp 771-784, 2001.
- M.J. Maurizi, R.E. Rossi, and J.A. Reyes, "Vibration Frequencies for a Uniform Beam with One End Spring-Hinged and Subjected to a Translational Restraint at the Other End," Journal of Sound and Vibration, 48(4), PP 565-568, 1976.
- 3. H.K. Kim and J.S. Lee, "Development of Core Seismic Analysis Models for KNGR Fuel Assemblies Associated with 0.3 g Seismic Loads," Nuclear Engineering and Design, 212, pp 201-210, 2002.
- 4. , " 3

. " , 2002.

5. , " , 1998.

APPENDIX

Components of matrix $|S_{ij}|$

$$\begin{split} s_{11} &= - \left(1 + 2 \sum_{m=1}^{\infty} \frac{\mathbf{I}^4}{\mathbf{I}^4 - m^4} \right), \ s_{12} &= \left(1 + 2 \sum_{m=1}^{\infty} \frac{(-1)^m \mathbf{I}^4}{\mathbf{I}^4 - m^4} \right), \ s_{13} &= \left(\overline{T}_0 + 2 \mathbf{p}^2 \sum_{m=1}^{\infty} \frac{m^2 \mathbf{I}^4}{\mathbf{I}^4 - m^4} \right) \ s_{14} = - \left(2 \mathbf{p}^2 \sum_{m=1}^{\infty} \frac{(-1)^m m^2 \mathbf{I}^4}{\mathbf{I}^4 - m^4} \right) \\ s_{21} &= \left(1 + 2 \sum_{m=1}^{\infty} \frac{(-1)^m \mathbf{I}^4}{\mathbf{I}^4 - m^4} \right), \ s_{22} &= - \left(1 + 2 \sum_{m=1}^{\infty} \frac{\mathbf{I}^4}{\mathbf{I}^4 - m^4} \right), \ s_{23} &= - \left(2 \mathbf{p}^2 \sum_{m=1}^{\infty} \frac{(-1)^m m^2 \mathbf{I}^4}{\mathbf{I}^4 - m^4} \right), \ s_{24} &= \left(\overline{T}_L + 2 \mathbf{p}^2 \sum_{m=1}^{\infty} \frac{m^2 \mathbf{I}^4}{\mathbf{I}^4 - m^4} \right) \\ s_{31} &= \left(1 - \frac{2\overline{R}_0}{\mathbf{p}^2} \sum_{m=1}^{\infty} \frac{m^2}{\mathbf{I}^4 - m^4} \right), \ s_{32} &= \left(\frac{2\overline{R}_0}{\mathbf{p}^2} \sum_{m=1}^{\infty} \frac{(-1)^m m^2}{\mathbf{I}^4 - m^4} \right), \ s_{33} &= \left(\overline{R}_0 + 2\overline{R}_0 \sum_{m=1}^{\infty} \frac{\mathbf{I}^4}{\mathbf{I}^4 - m^4} \right), \ s_{34} &= - \left(\overline{R}_0 + 2\overline{R}_0 \sum_{m=1}^{\infty} \frac{(-1)^m \mathbf{I}^4}{\mathbf{I}^4 - m^4} \right) \\ s_{41} &= \left(\frac{2\overline{R}_L}{\mathbf{p}^2} \sum_{m=1}^{\infty} \frac{(-1)^m m^2}{\mathbf{I}^4 - m^4} \right), \ s_{42} &= \left(\overline{R}_L + 2\overline{R}_L \sum_{m=1}^{\infty} \frac{\mathbf{I}^4}{\mathbf{I}^4 - m^4} \right), \ s_{44} &= \left(\overline{R}_L + 2\overline{R}_L \sum_{m=1}^{\infty} \frac{\mathbf{I}^4}{\mathbf{I}^4 - m^4} \right) \end{split}$$

 $\overline{T}_0 = \frac{T_0 L^3}{EI}, \quad \overline{T}_L = \frac{T_L L^3}{EI}, \quad \overline{R}_0 = \frac{R_0 L}{EI}, \quad \overline{R}_L = \frac{R_L L}{EI}, \quad \mathbf{w}_n^2 = \frac{EI}{\mathbf{r}A} \left(\frac{m^4 \mathbf{p}^4}{L^4} \right), \quad \mathbf{I}^4 = \frac{\mathbf{r} A L^4}{\mathbf{p}^4 EI} \mathbf{w}^2 = \frac{\mathbf{b}^4}{\mathbf{p}^4}$