2002

DeCART SMART 2

Two-Dimensional SMART Core Calculation by the DeCART Code

150

Abstract

A new module to treat the HELIOS library is implemented to DeCART code and verified by solving assembly level and two-dimensional SMART core problems. In assembly level problems, DeCART code shows maximum of 1~2 % differences in the pin power and 200~300 pcm in the infinite multiplication factors from HELIOS code. In the two-dimensional core problem, DeCART code shows a good calculation speed by obtaining the results within an hour and hgh accuracy of about maximum 200 pcm difference in eigenvalue and 5% in assembly power from CASMO/MASTER code that is used as a design code system of SMART core.

1.

DeCART ^{1,2)}

MOC, NEM 3 ³⁾ . 가 . , DeCART HELIOS Library . Library DENT-2D⁴⁾ . 가 . 가

DeCART 7, SMART DeCART SMART CASMO⁵, HELIOS⁶ 2 SMART CASMO/MASTER⁷ DeCART 7 2 DeCART , 3

DeCART SMART CASMO, HELIOS / 가 . 4 2 CASMO/MASTER / 가 .

2. DeCART

가 DeCART Library . DeCART 가 . 2.1

, (background cross section) , , , DeCART , DeCART 가 DeCART 가

. 56 7 . フト .

2.2 가

가 Subgroup , 가 DeCART 가 NOC , 가

, , , . 2.3

DeCART

· , , .

2 DeCART . DeCART Library , . 가 Library

. 3 , , MOC . DeCART 가

.

3.

, A, B, C 가 . , DeCART (Modular Cell) . DeCART DeCART . DeCART

. 3 DeCART 가 . DeCART

DeCART 2 .

DeCART DeCART 가 . 가 1 Library 가 . HELIOS 45 HELIOS CASMO , - 4. 1 Library DeCART 35 가 MOC , 0.02/16/4(, cm/180° 가 /90°) 0.05/8/2 DeCART . DeCART , 가 HELIOS 가 1~2% 0.05/8/2

가 0.02/16/4 HELIOS . DeCART 0.02/16/4 , DeCART HELIOS 200~300 pcm .

4.2 SMART

 DeCART
 2
 SMART
 , SMART

 CASMO/MASTER
 .
 Spacer

 Grid
 .
 DeCART
 ,

 0.05/8/2
 ,
 90°
 ,

가 .

6 2 SMART DeCART 2 CASMO/MASTER 1GHz PENTIUM III PC 2 . DeCART SMART CASMO/MASTER 1 . HZP DeCART 60 pcm , CZP 250 pcm , CZP HZP 1.2% 5% DeCART 가

, , , / 가 .

5.

Library DeCART SMART 2 가 . , DeCART / 가

가

- 1. J. Y. Cho et al., "Cell Based CMFD Formulation for Acceleration of Whole core Method of Characteristics Calculation," Journal of the Korean Nuclear Society., Vol. 34. No. 3, 2002.
- 2. H.G.Joo et al., "Dynamic Implementation of the Equivalence Theory in the Heterogeneous Whole Core Transport Calculation," PHYSOR 2002, Seoul, Korea, Oct. 7-10, 2002.
- 3. J. Y. Cho et al., "Three-Dimensional Heterogeneous Whole Core Transport Calculation Employing Planar MOC Solutions," Transaction Am. Nucl. Soc., Nov. 17-21, 2002.(to be published).
- 4. K. S. Kim et al., "Development of DENT-2D Code Based on the Characteristics Method," Transaction Am. Nucl. Soc., June, 2002.
- 5. E. Edenius et al., "CASMO-3, A Fuel Assembly Burnup Program Methodology Version 4.4," STUDSVIK/NFA-89/2 (1989).
- 6. R. J. Stamml'er et al., "HELIOS Methods," Studsvik Scanpower(1998).
- B.O.Cho, et al., "MASTER-2.0: Multi-Purpose Analyzer for Static and Transient Effects of Reactors," KAERI/TR-1211/99 (1999).

1.

2

			1.							
			Kinf		Diff(pcm)		Max. Power Diff.(%)			
Туре	Temp.(K)	Gap	HELIOS	CASMO	DeCART		CASMO	DeCART		
					*0.02/16/4	0.05/8/2				
NoBP	600	Х	1.43345	-180.7	224.5	91.2	1.35	0.66		
		0	1.43536	-192.3	240.6	109.8	1.27	0.55		
	300	Х	1.50691	-352.4	87.1	16.0	1.60	0.78		
		0	1.50803	-356.8	95.6	25.9	1.00	0.72		
А	600	0	1.00131	-299.6	183.9	132.1	2.75	0.99		
	300	0	1.09357	35.7	215.3	224.7	3.93	1.71		
B1	600	0	1.11662	-201.5	215.5	71.3	2.20	1.54		
	300	0	1.21604	129.9	216.4	180.8	2.69	3.41		
C1	600	0	1.03251	-178.2	256.3	94.7	2.24	1.18		
	300	0	1.14383	191.5	300.2	280.0	2.98	1.78		

HELIOS	: Current Coupling Option -4, Resonance	Option 1
*0.02/16/4:	Ray Spacing, cm/No. of Azimuthal Angles/	No of Polar Angles

]							
1.048	1.026 POWER, HELIOS								1.038	1.016	POWER, HELIOS						
-0.39	-0.73			Diff.(%	, CASM	0			-0.41	-0.68		Diff.(%), CASMO					
0.61	-0.24			Diff.(%), DeCA	RT			0.47	-0.37		Diff.(%), DeCART					
1.048	1.026	1.026							1.038	1.016	1.017						
-0.44	-0.74	-0.77							-0.28	-0.72	-0.76						
0.63	-0.26	-0.23							0.50	-0.40	-0.35						
0.000	1.048	1.050								1.039	1.041		1				
0.00	0.03	0.05								0.05	0.14						
0.00	0.57	0.55			_					0.44	0.43			_			
1.044	1.023	1.026	1.056	1.051	I				1.036	1.015	1.018	1.048	1.044				
-0.30	-0.75	-0.83	0.05	-1.07					-0.26	-0.64	-0.74	0.03	-1.07				
0.66	-0.27	-0.28	0.57	-0.29		_			0.54	-0.38	-0.39	0.46	-0.38		_		
1.039	1.018	1.021	1.053	1.066					1.032	1.011	1.014	1.046	1.060				
-0.24	-0.64	-0.74	0.13	-0.11					-0.25	-0.66	-0.69	0.08	-0.13				
0.65	-0.23	-0.21	0.65	0.30			-		0.54	-0.32	-0.30	0.55	0.24			-	
	1.030	1.032		1.046	1.019	0.971				1.026	1.028		1.042	1.017	0.971		
	0.28	0.28		0.04	0.43	-0.08				0.23	0.21		0.07	0.43	-0.13		
	0.52	0.51		0.33	0.45	-0.21		-		0.49	0.48		0.32	0.46	-0.14		-
1.010	0.990	0.991	1.011	0.983	0.956	0.935	0.920		1.010	0.990	0.991	1.011	0.985	0.958	0.940	0.930	
0.09	-0.43	-0.36	0.50	-0.23	0.23	0.53	0.75		0.10	-0.43	-0.48	0.46	-0.36	0.17	0.41	0.57	
0.49	-0.38	-0.40	0.32	-0.36	-0.21	-0.25	-0.37		0.60	-0.25	-0.28	0.45	-0.20	-0.03	-0.04	-0.01	
0.962	0.960	0.959	0.958	0.948	0.935	0.922	0.914	0.911	0.972	0.970	0.969	0.969	0.959	0.948	0.937	0.934	0.940
0.14	0.24	0.22	0.30	0.40	0.63	0.93	1.07	1.35	0.14	0.25	0.31	0.35	0.38	0.68	0.81	0.90	1.27
-0.27	-0.46	-0.44	-0.26	-0.35	-0.35	-0.37	-0.54	-0.57	-0.28	-0.46	-0.44	-0.26	-0.33	-0.32	-0.30	-0.30	-0.46

(a)

(b)

4.

(600 K)

5.

Cell Division

2	2
۷.	2

		kinf	Max. Power	Computing	
Temp.(K)	DeCART	MASTER	Diff.(pcm)	Diff.(%)	Time,sec*
600	1.01990	1.02047	56.6	1.21	3344
300	1.13849	1.14106	225.7	5.35	3432

DeCART: 0.05/8/2

* 1GHz PENTIUM III PC

	1.319	1.299	1.248	1.175	0.675
	-1.21	-1.00	-0.16	0.17	1.19
		1.277	1.215	1.065	0.490
		-0.55	0.00	0.28	1.02
RPD, DeCAR	Т	1.164	0.770		
% Diff., CAS	MO/MAS	0.17	0.00		

(a) 600 K

	1.326	1.312	1.282	1.216	0.637
	-4.00	-3.35	-1.72	-0.25	3.61
		1.297	1.249	1.081	0.430
	-2.62	-1.04	0.74	5.35	
RPD, DeCAR	Т	1.189	0.732		
% Diff., CAS	MO/MAS	0.67	3.55		

(b) 300K