HYPER

Optimum Design of Beam Window's Diameter and Thickness of Hyper Target System

, , ,

150

Abstract

HYPER is designed to transmute long-lived TRU and fission products such as Tc-99 and I-129. Pb-Bi is used as the coolant and spallation target material at the same time. HYPER is expected to need about 20mA proton beam to sustain a 1000MW_{th} power level. The cylindrical beam tube and spherical window is adopted as the basic window shape of HYPER. The window diameter and the window thickness are varied to find the maximum allowable current based on the design criteria : Pb-Bi temperature < 500° C, window temperature < 600° C, Pb-Bi velocity < 2m/s and window stress < 160MPa. The LAHET code is used to simulate heat generation. CFX is also used for the thermal-hydraulics calculation. Based on our design criteria, the maximum allowable current is calculated to be about 9.2mA, which is smaller than the required current. Therefore, an upgrade of the target system design is required.

2002

가 가 가 가 TRU 가 NIMBY 가 (Accelerator-Driven Transmutation System, ADS) . ADS 1GeV , 가 ADS 1997 가 (KAERI) HYPER(HYbrid Power Extraction Reactor) [1-2]. HYPER (TRU) Tc-99, I-129 가 , 1000MW 1GeV 20mA . Figure 1 HYPER HYPER Pb-Bi . Pb-Bi 125°C , 가 가 Pb-Bi Pb-Bi • , Pb-Bi 9Cr-2WVTa ferritic/martensite LAHET , CFX , 1

1.

.

Figure 1. The outline of HYPER

2.

2.1

,

,				HYPER	
		가	FP	TRU	
Figure 2			,	25cm	가
	,		Pb-Bi 가		

HYPER 가

.

					(D _t),	
(P), Pb-Bi	(T),	(D _w),		(D _b),	(.	E),
, Pb-Bi	(V),	(d)	9 가			
(I)						

,

Figure 2. Outline of the target system design

 (D_b) 5cm 5cm 가 . Pb-Bi (V) , Pb-Bi Figure 2 2m/sPb-Bi (V) (D_w) (D_b) (V)가 Pb-Bi (D_w)

2.2

Pb-Bi 가 . Pb-Bi 가 가 Pb-Bi 500°C , 2m/s[3]. 600°C 9Cr-2WVTa Pb-Bi 600°C 9Cr-2WVTa 600°C 480MPa 1/3 160MPa , [4-5]. Table 1

3.

2.1 (D_w), (D_b), Pb-Bi (V), (d) , HYPER 7 . . Pb-Bi LCS 2.7(LAHET Code System) [6]. CFX 4.4. . LAHET fitting , CFX .

CFX

.

 Table 2
 . Pb-Bi

 450°C, 9Cr-2WVTa 500°C
 . 9Cr-2WVTa

 (yield stress)
 9Cr-MoVNb

 9Cr-MoVNb 7}
 ferritic 9Cr

 7
 7

.

	Material of Beam Tube and Window	9Cr-2WVTa
Material and Shape of Target	Shape of Beam Tube and Window	Cylindrical beam tube + Hemi-Spherical beam window
System	Target Material	Pb-Bi
	Target Channel Shape	Cylinder
	Target Channel Diameter(Dt)	66cm
	Pb-Bi Inlet Temperature(T)	340°C
	Pressure loaded to beam window(P)	16atm at 0.3m above lower surface of the beam window
	Window Diameter(D _w)	Need to be decided
Design Parameters	Beam Diameter(D _b)	$(D_w - 5)cm$
	Distribution of Beam Current Density	Parabolic with circular beam shape
	Inlet Velocity of Pb-Bi(V)	Need to be decided
	Beam Energy(E)	1GeV
	Thickness of Beam Window(d)	Need to be decided
	Temperature of Pb-Bi	$< 500^{\circ}$ C
Design Criteria	Velocity of Pb-Bi	< 2m/s
Design Criteria	Temperature of Beam Window	< 600°C
	Stress Intensity of Beam Window	< 160MPa

Table 1. The design criteria and values of fixed parameters.

			,		50cm	35cm	5cm	
				2.0mm	3.5mm	0.5mi	n	가
					5cm		,	
0.1m	가		, Pb-B	i				
2m/s								

Pb-Bi (450°C)	Density (10180.8kg/m ³) Thermal Conductivity (14.2W/m·K) Thermal Expansion Coefficient (1.2×10 ⁻⁴ K ⁻¹) Viscosity (1.39E-3kg/m·s)
9Cr-2WVTa (500°C)	Density (7580kg/m ³) Thermal Conductivity (30W/m·K) Thermal Expansion Coefficient (1.23×10 ⁻⁵ K ⁻¹) Young' s Modulus (181GPa) Poisson Ratio (0.29)

Table 2. Material data used for calculations

4.

4.1

		Pb-Bi			,	
Pb-Bi	r	12 , ρ	8, 96			Table
	40cm,	35cm,	2mm			
		19.8 < r < 20 cm			10	
	, $\rho > 20cm$		0.4W/cm ³			
	62%가	Pb-Bi			,	
				1mA	45W/cm3	,
		9W/cm ²				
17.5cm)			,			
	Pb-Bi 17.5cm)	Pb-Bi r 40cm, , ρ > 20cm 62%7t	Pb-Bi r 12 , ρ 40cm, 35cm, . 19.8 < r < 20cm	$\begin{array}{cccccc} Pb-Bi & r & 12 \ , \ \rho & 8 \ , \ 96 \\ 40 cm, & 35 cm, & 2mm \\ . & 19.8 < r < 20 cm \\ . & 0.4 W/cm^3 \\ 62\% 7 \ Pb-Bi \\ . & . \\ 9W/cm^2 & . \\ 17.5 cm \end{array}$	$\begin{array}{ccccccc} Pb\text{-Bi} & r & 12 \ , \ \rho & 8 \ , \ 96 & & & & & & & & & & & & & & & & & & $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

. Pb-Bi

 $(\ \rho \ < \ 17.5 cm \) \qquad (z)$

(1) .

r > 80 mm

$$Q = C \frac{2I}{\boldsymbol{p}R_b^4} (R_b^2 - \boldsymbol{r}^2) \quad (\text{ unit : W/cm}^3)$$
(1)
(W/cm³),

I = (mA),

fitting

 $R_b = (cm),$

 \boldsymbol{r} = (cm),

,

		Window and Pb-Bi under window									
	0 <p<2.5cm< td=""><td>2.5<p<5< td=""><td>5<p<7.5< td=""><td>7.5<p<10< td=""><td>10<p<12.5< td=""><td>12.5<p<15< td=""><td>15<p<17.5< td=""><td>17.5<p<20< td=""></p<20<></td></p<17.5<></td></p<15<></td></p<12.5<></td></p<10<></td></p<7.5<></td></p<5<></td></p<2.5cm<>	2.5 <p<5< td=""><td>5<p<7.5< td=""><td>7.5<p<10< td=""><td>10<p<12.5< td=""><td>12.5<p<15< td=""><td>15<p<17.5< td=""><td>17.5<p<20< td=""></p<20<></td></p<17.5<></td></p<15<></td></p<12.5<></td></p<10<></td></p<7.5<></td></p<5<>	5 <p<7.5< td=""><td>7.5<p<10< td=""><td>10<p<12.5< td=""><td>12.5<p<15< td=""><td>15<p<17.5< td=""><td>17.5<p<20< td=""></p<20<></td></p<17.5<></td></p<15<></td></p<12.5<></td></p<10<></td></p<7.5<>	7.5 <p<10< td=""><td>10<p<12.5< td=""><td>12.5<p<15< td=""><td>15<p<17.5< td=""><td>17.5<p<20< td=""></p<20<></td></p<17.5<></td></p<15<></td></p<12.5<></td></p<10<>	10 <p<12.5< td=""><td>12.5<p<15< td=""><td>15<p<17.5< td=""><td>17.5<p<20< td=""></p<20<></td></p<17.5<></td></p<15<></td></p<12.5<>	12.5 <p<15< td=""><td>15<p<17.5< td=""><td>17.5<p<20< td=""></p<20<></td></p<17.5<></td></p<15<>	15 <p<17.5< td=""><td>17.5<p<20< td=""></p<20<></td></p<17.5<>	17.5 <p<20< td=""></p<20<>			
Window	45.0	42.9	40.1	34.6	26.7	17.3	5.9	0.3			
20 <r<22cm< td=""><td>52.2</td><td>49.1</td><td>45.3</td><td>38.5</td><td>29.7</td><td>19.1</td><td>6.4</td><td>0.1</td></r<22cm<>	52.2	49.1	45.3	38.5	29.7	19.1	6.4	0.1			
22 <r<24< td=""><td>50.6</td><td>49.1</td><td>44.8</td><td>37.8</td><td>29.1</td><td>18.2</td><td>6.2</td><td>0.2</td></r<24<>	50.6	49.1	44.8	37.8	29.1	18.2	6.2	0.2			
24 <r<26< td=""><td>48.3</td><td>46.2</td><td>42.3</td><td>35.5</td><td>27.2</td><td>17.2</td><td>5.9</td><td>0.3</td></r<26<>	48.3	46.2	42.3	35.5	27.2	17.2	5.9	0.3			
26 <r<28< td=""><td>46.1</td><td>43.1</td><td>39.4</td><td>33.0</td><td>25.3</td><td>15.6</td><td>5.5</td><td>0.5</td></r<28<>	46.1	43.1	39.4	33.0	25.3	15.6	5.5	0.5			
28 <r<30< td=""><td>41.9</td><td>40.1</td><td>36.3</td><td>30.6</td><td>22.9</td><td>14.4</td><td>5.2</td><td>0.6</td></r<30<>	41.9	40.1	36.3	30.6	22.9	14.4	5.2	0.6			
30 <r<40< td=""><td>32.3</td><td>30.5</td><td>27.5</td><td>23.0</td><td>17.3</td><td>10.7</td><td>4.2</td><td>0.8</td></r<40<>	32.3	30.5	27.5	23.0	17.3	10.7	4.2	0.8			
40 <r<50< td=""><td>19.1</td><td>18.1</td><td>16.2</td><td>13.4</td><td>10.0</td><td>6.2</td><td>2.7</td><td>0.9</td></r<50<>	19.1	18.1	16.2	13.4	10.0	6.2	2.7	0.9			
50 <r<60< td=""><td>10.5</td><td>10.1</td><td>9.0</td><td>7.4</td><td>5.5</td><td>3.5</td><td>1.7</td><td>0.7</td></r<60<>	10.5	10.1	9.0	7.4	5.5	3.5	1.7	0.7			
60 <r<70< td=""><td>6.1</td><td>5.8</td><td>5.2</td><td>4.3</td><td>3.3</td><td>2.1</td><td>1.2</td><td>0.6</td></r<70<>	6.1	5.8	5.2	4.3	3.3	2.1	1.2	0.6			
70 <r<80< td=""><td>3.0</td><td>2.8</td><td>2.4</td><td>1.9</td><td>1.4</td><td>0.9</td><td>0.5</td><td>0.3</td></r<80<>	3.0	2.8	2.4	1.9	1.4	0.9	0.5	0.3			
80 <r, td="" z<80<=""><td>0.2</td><td>0.2</td><td>0.2</td><td>0.1</td><td>0.1</td><td>0.1</td><td>0.1</td><td>0.1</td></r,>	0.2	0.2	0.2	0.1	0.1	0.1	0.1	0.1			

Table 3. The heat generation rate(W/cm³) of cells for window diameter of 40cm case (beam radius : 35cm, current : 1mA).

Figure 3. Fitting result of beam window and Pb-Bi region (window diameter=40cm)

Lover	C(x10 ⁴)								
Layer	D _w =50cm	45cm	40cm	35cm	30cm				
Window	2.22	2.20	2.20	2.18	2.17				
20 <r<22cm< td=""><td>2.55</td><td>2.55</td><td>2.56</td><td>2.56</td><td>2.54</td></r<22cm<>	2.55	2.55	2.56	2.56	2.54				
22 <r<24< td=""><td>2.54</td><td>2.53</td><td>2.53</td><td>2.52</td><td>2.52</td></r<24<>	2.54	2.53	2.53	2.52	2.52				
24 <r<26< td=""><td>2.42</td><td>2.42</td><td>2.40</td><td>2.39</td><td>2.36</td></r<26<>	2.42	2.42	2.40	2.39	2.36				
26 <r<28< td=""><td>2.30</td><td>2.28</td><td>2.27</td><td>2.24</td><td>2.22</td></r<28<>	2.30	2.28	2.27	2.24	2.22				
28 <r<30< td=""><td>2.13</td><td>2.11</td><td>2.09</td><td>2.07</td><td>2.04</td></r<30<>	2.13	2.11	2.09	2.07	2.04				
30 <r<40< td=""><td>1.63</td><td>1.61</td><td>1.59</td><td>1.56</td><td>1.52</td></r<40<>	1.63	1.61	1.59	1.56	1.52				
40 <r<50< td=""><td>0.98</td><td>0.96</td><td>0.93</td><td>0.90</td><td>0.87</td></r<50<>	0.98	0.96	0.93	0.90	0.87				
50 <r<60< td=""><td>0.54</td><td>0.53</td><td>0.51</td><td>0.49</td><td>0.46</td></r<60<>	0.54	0.53	0.51	0.49	0.46				
60 <r<70< td=""><td>0.31</td><td>0.29</td><td>0.28</td><td>0.26</td><td>0.24</td></r<70<>	0.31	0.29	0.28	0.26	0.24				
70 <r<80< td=""><td>0.16</td><td>0.15</td><td>0.14</td><td>0.13</td><td>0.11</td></r<80<>	0.16	0.15	0.14	0.13	0.11				

Table 4. The fitting results of constant C

4.2

4.2.1

(User Defined Function) . , SIMPLEC hybrid . logarithmic turbulent Prandtl k-ε . CFX4.4 가 solver , line solver . 가 4.2.2 Inlet, outlet, symmetry conducting solid , 가 , inlet wall • 가 2 . .

CFX 4.4

,

4.2.3

· (Др) , hoop (2) .

$$\boldsymbol{S}_{q} = \frac{\Delta p \times (0.5 \times D_{w} - d)}{d} \tag{2}$$

.

•

, . Pb-Bi . (Δp)7¦ ,

(3)

$$s_{ih} = Ea\Delta T$$
(3)

, $\alpha =$, E = Young's modulus

,

,

(2),(3)

,

(2),(3)

,

(2),(3)

,

(2),(3)

,

(2),(3)

,

(2),(3)

,

(2),(3)

,

(2),(3)

,

(2),(3)

,

(2),(3)

,

(2),(3)

,

(2),(3)

,

(2),(3)

,

(2),(3)

,

(2),(3)

,

(2),(3)

,

(2),(3)

,

(2),(3)

,

(2),(3)

,

(2),(3)

,

(2),(3)

,

(3)

,

(2),(3)

,

(2),(3)

,

(2),(3)

,

(2),(3)

,

(3)

,

(2),(3)

,

(3)

,

(3)

,

(3)

,

(3)

,

(3)

,

(3)

,

(3)

,

(3)

,

(3)

,

(3)

,

(4)CFX

,

(2),(3)

,

(5)MPa

,

(2),(3)

,

(5)MPa

,

,

(2),(3)

,

,

(2),(3)

,

,

(2),(3)

,

,

(2),(3)

,

,

(2),(3)

,

,

(2),(3)

,

,

(2),(3)

,

,

(2),(3)

,

,

(2),(3)

,

,

(2),(3)

,

,

(2),(3)

,

(2),(3)

,

(2),(3)

,

(2),(3)

,

(2),(3)

,

(2),(3)

,

(2),(3)

,

(2),(3)

,

(2),(3)

,

(2),(3)

,

(2),(3)

,

(2),(3)

,

(2),(3)

,

(2),(3)

,

(2),(3)

,

(2),(3)

,

(2),(3)

,

(2),(3)

,

(2),(3)

,

(2),(3)

,

(2),(3)

,

(2),(3)

,

(2),(3)

,

(2),(3)

,

(2),(3)

,

(2),(3)

,

(2),(3)

,

(2),(3)

,

(2),(3)

,

(2),(3)

,

(2),(3)

,

(2),(3)

,

(2),(3)

,

(2),(3)

,

(2),(3)

,

(2),(3)

,

(2),(3)

,

(2),(3)

,

(2),(3)

,

(2),(3)

,

(2),(3)

,

(2),(3)

,

(2),(3)

,

(2),(3)

,

(2),(3)

,

(2),(3)

,

(2),(3)

,

(2),(3)

,

(2),(3)

,

(2),(3)

,

(2),(3)

,

(2),(3)

,

(2),(3)

,

(2),(3)

,

(2),(3)

,

(2),(3)

,

(2),(3)

,

(2),(3)

,

(2),(3)

,

(2),(3)

,

(2),(3)

,

(2),(3)

,

(2),(3)

,

(2),(3)

,

(2),(3)

,

(2),(3)

,

(2),(3)

,

(2),(3)

,

(2),(3)

,

(2),(3)

,

(2),(3)

,

(2),(3)

,

(2),(3)

,

(2),(3)

,

(2),(3)

,

(2),(3)

,

(2),(3)

,

(2),(3)

,

(2),(3)

,

(2),(3)

,

(2),(3)

,

(2),(3)

,

(2),(3)

,

(2),(3)

,

(2),(3)

,

(2),(3)

,

(2),(3)

,

(2),(3)

,

(2),(3)

,

(

4.2.4

40cm		,		2mm	3.5mm	0.5mm	가		
,	Table 5								
Table 5			가			가			,
				가		가 .		가	
							•		
		가						가	

. Table 5 ,

.

Window Thickness(mm)	2.0	2.5	3.0	3.5
Maximum Allowable Current Satisfying Temperature Limit(mA)	8.7	8.3	7.9	7.6
Maximum Pb-Bi Inlet Velocity(m/s)		1.1	1	
Maximum Pb-Bi Temperature(°C)	500	500	500	500
Maximum Window Temperature(°C)	526	539	553	569
Maximum Stress(MPa)	158	126	105	90

Table 5. CFX results for cases of 4 different window thickness with fixed window diameter 40cm

Table 6. CFX results for cases of 4 different window diameters with window thickness 2, 2.5mm

Window Diameter(cm)		0	4	8	4	5	4	0	35
Window Thickness(mm)	2.0	2.5	2.0	2.5	2.0	2.5	2.0	2.5	2.0
Maximum Allowable Current Satisfying Temperature Limit(mA)	9.6	9.1	9.7	9.2	9.5	9.0	8.7	8.3	7.5
Maximum Pb-Bi Inlet Velocity(m/s)	0.	8	0.8	37	0.9	97	1.1	11	1.24
Maximum Pb-Bi Temperature(°C)	500	500	500	500	500	500	500	500	500
Maximum Window Temperature(°C)	518	525	519	527	522	532	526	539	530
Maximum Stress(MPa)	198	158	190	152	178	142	158	126	138

Parabolic Beam Type

Figure 4. CFX results for cases of 4 different window diameters with window thickness 2, 2.5mm

(a) Temperature

(b) Velocity

Figure 5. Temperature and velocity distribution of optimum designed target system

Figure 5

· 가 , , ,

5.

가 LAHET, CFX HYPER Pb-Bi 9Cr-2WVTa , pb-pi HYPER 가 가 . HYPER 가 0.87m/s, 2.5mm 48cm, 43cm, pb-pi 9.2mA 20mA • 46% , CFX bypass , 가 injection 가 Pb-Bi 가 가

- WON S. PARK et al., "Transmutation Technology Development," Korea Atomic Research Institute, KAERI/RR-2117/2000 (2000).
- 2. Park, W. S. et al., 1997, Development of Nuclear Transmutation Technology, KAERI/RR-1702/96.

- **3.** Yachmenyov, G. S. et al., 1999, Problems of Structural Materials' Corrosion in Lead-Bismuth Collant, P roceedings of Heavy Liquid Metal Coolants in Nuclear Technology, Vol1. p133-140.
- 4. Klueh, R. L., 1996, Experience with Ferritic/martensitic Steels for Fusion Application, Proceedings of International Workshop on Spallation Materials, 3.3-3.26.
- 5. Rust, J. H., 1979, Nuclear Power Plant Engineering, Haralson Publishing Company, p385.
- 6. Prael, R. E. et al., 1989, User Guide to LCS : The LAHET Code System, LA-UR-89-3014.