KALIMER

`2002

Evaluation of Thermal Protection Method of LMR Reactor Vessel and Design Improvement of KALIMER Reactor Baffle

Abstract

LMR reactor vessels operated in high temperature have a severe thermal damage due to the significant temperature gradient in the hot pool free surface regions of reactor vessel. The thermal protection mechanism of LMR reactor vessel should be designed for the structural integrity in high temperature condition. In this paper, the thermal protection mechanism of foreign LMR reactor vessels is investigated for the power upgrade of KALIMER and the modified reactor baffle design with a Y-piece type structure is proposed for the reduction of thermal damage for KALIMER reactor vessel. The modified reactor baffle design leads to reduce the thermal damage such as creep-fatigue and ratcheting in the transient operation condition.

1.

			•						
				フトフト					
								3가	,
	,								·
		CFBR	SPX	EF	R				[1,2]
							[3].		
	(ann	ulus structur	e)		PRISM		KAI	LIMER	가
KALIN	[4]. MER		SPA(15)	oow we)	EFK(14701	viwe)	CFBR	(15001)	Iwe)
	KALIMER	KAI IMER			PSUBS				
		KALIWILK		가]	KALIMER			
I	PSDRS 가가							KALI	MED
가									
2.									
2-1.									
1			SPX		EFR		(5%)
weir				[1,2].					
	overflow 가	가			가	. ,			

가

가 500

2	-2	2	•
4	-	4	•

.

						DFBR Monju	DFBR
Phase I							
	2	DFBR	Phase II				
	[3].						
DF	BR	Phase II					50 mm
35mm		. CFBR				가	
3	80mm					フ	'F
					CFBR	3	
		3					
	가						
				30 mm			
3							

3. KALIMER

.

3-1. PSDRS

KALIMER	PSDRS(Passive Safety	Decay Heat	Removal	System)	4	
	PSDRS					
		1000 MWe				가
가	. KALIMER					
Thermosyphon	PSDRS					
[6].				700 MWe		
가		PSDRS				가
700 MWe						
600	가					
	가	가				

.

3-2.

KALIMER

			5
Y-	가		[7].
PSDRS		가	50 mm
KALIMER			
PSDRS			
1000 MWe			Y-
가		500 MWe	
KALIMER		KALIMER	가

가,

TB : Thermal Baffle , RB : Reactor Baffle, RV : Reactor Vessel CV : Containment Vessel, AS : Air Separator

. PSDRS

•

-

.

1

Stress Intensity Distributions along the Reactor Vessel Inner Surface during Sodium Expansion for PSDRS Event without Thermal Baffle

Stress Intensity Distributions along the Reactor Vessel Inner Surface during Sodium Expansion for PSDRS Event after Overflow Cycle with Thermal Baffle

가

	Total Inelastic Strain, <i>e</i> ₁ ,%			Fatigue Damage, D_f			Creep Damage, D _c		
	W/o TB	With TB Before Overflow	With TB After Overflow	W/o TB	With TB Before Overflow	With TB After Overflow	W/o TB	With TB Before Overflow	With TB After Overflow
Reactor Baffle - hot pool free surface level	0.539	0.057	0.049	0.382 x 10 ⁻⁴	0.147 x 10 ⁻⁵	0.156 x 10 ⁻⁵	0.0069	0.0010	0.0010
Reactor Vessel - hot pool free surface level	0.582	0.018	0.193	0.727 x 10 ⁻³	0.402 x 10 ⁻⁵	0.166 x 10 ⁻⁴	0.0088	0.0014	0.0032
Reactor Vessel - Y-junction level	_	0.202	0.060	_	0.370 x 10 ⁻⁴	0.202 x 10 ⁻⁴	-	0.0046	0.0035

[1] S. Aita and R.J. Gibert, "Fluidelastic Instability in a Flexible Weir : A Theoretical Model," ASME/PVP, pp. 51-57, 1985.

가

,

- [2] L. Borsoi, "Flow-Induced Vibration of Nuclear Components : Future R&D Perspective Derived from French Experience," SMIRT 16, Div. J, pp.1-12, 1991.
- [3] T. Inagaki, et al., "Design Study of the Demonstration FBR in Japan," ICONE-8048, 2000.
- [4] , KALIMER , , , KAERI/TR-2204/2002, 2002.
- [5] G.E. Boardman, et al., "A Description of the S-PRISM Plant," ICONE-8168, 2000
- [6] , , 2

, KAERL/RR-2211/2001, 2002.

[7] Gyeong-Hoi, Koo and J.-H. Lee, "Design of LMR Reactor Structures in the Vicinity of Hot Pool Free Surface Regions Subjected to Moving Elevated Temperature Cycles," Int. J. of Pressure Vessels and Piping, Vol. 79, pp. 167-179, 2002.