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Abstract

A new coarse-mesh rebalance method is developed and tested to accelerate one-
dimensional discrete ordinates neutron transport equation. The method is based on the use of
angular dependent rebalance factors. Unlike the original Coarse-Mesh Rebaance method,
Fourier analysis and numerical results show that this Angular Dependent Coarse-Mesh
Rebalance(ADCMR) method is unconditionally stable for any optical thickness and that the
acceleration effect is significant.

1. Introduction

Since Kopp introduced the synthetic concept to accelerate source iteration of the transport
calculation in early sixtieg1l], various acceleration methods were proposed such as
conventional rebalance methods, Diffusion Synthetic Acceleration (DSA)[2,3,4], Transport
Synthetic Acceleration (TSA)[5], Projected Discrete Ordinates (PDO)[6,7], and so on.
Coarse-Mesh Rebalance (CMR) method[8,9] that was once the most popular acceleration
methods has existed in the literature since the mid-1960s and was implemented in many
commercia neutron transport codes. CMR method is versatile, which can be applied to a
wide range of problems in various geometries with any Sy differencing scheme. However,
people knew that CMR is unstable with scattering ratio ¢ close to unity or with optically thick
cells by experience and Cefus and Lasen showed this by analytically using Fourier
anaysis.[9] Due to this shortage and the development of unconditionally stable DSA method
in late 1970s and early 1980s, CMR was replaced by DSA in many problems and codes.
Although DSA shows better behavior in spectral radius, DSA till has a problem. For
unconditional stability DSA needs consistency in spatial discretization of high and low order
equations and DSA can be applied only to square meshes. These block up to extend DSA to
two- or three-dimensional problem. Due to expansion of computer capacity, people tries to



solve three-dimensional whole-core heterogeneous problems for accuracy. Even though
computer technology is advancing, it needs many iterations and long computing time.
Therefore we focus on CMR again. Because CMR is based on neutron balance over the
coarse-mesh only, it will be possible to apply to other than Sy methods such as MOC and treat
non-square meshes. These aspects are very attractive but CMR does not shows unconditional
stability. For these reason, we will discuss an unconditionally stable coarse-mesh rebalance
method by introducing angular dependent rebalance factors in coarse-meshes. The angular
dependent rebalance factors are aready introduced in fine-mesh cases by Hong and
Cho[10,11] and Park and Cho[12,13] and it shows good results. So as a starting point we will
describe Angular Dependent Coarse-Mesh Rebalance method, shortly ADCMR, for one-
dimensional Sy equation with diamond-difference scheme and demonstrate unconditional
stability by Fourier analysis.

2. Formulation

Let us consider slab geometry like Fig. 1. The whole problem consists of N coarse-mesh
cells, each coarse-mesh containing p fine-meshes. The |-th source iteration for the Sy
transport equation on a nonuniform mesh is described by
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Fig. 1. Coarse-mesh divisions of slab geometry



The nonlinear rebalance factors f’ s, which are defined on coarse-mesh boundaries only, are
simply expressed as follows:
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By an arbitrary spatial discretization scheme, the outgoing and mesh-centered angular
fluxes can be expressed as follows using incoming angular flux in i-th fine-mesh:
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After eliminating all interior angular fluxes successively, outgoing angular fluxes of the n-
th coarse-mesh and al mesh-centered angular fluxes are expressed as
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Now we change all theiteration indices to |+ 1 and introduce rebalance factors given in Egs.
(49) and (4b). Then multiplying Eq. (6a) by m, and summing over half angle, we find the

rebalance factors as
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and by summing over half angle of Eq. (6b), we find the mesh-centered scalar fluxes as

follows:
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If we use the Diamond-Difference (DD) spatial discretization scheme, constants A, B, C,

and D are given by
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The overall procedure of our ADCMR method can be described as follows. First, the high-
order transport equations are solved by transport sweep and the coefficients in Egs. (7) and
(8) are calculated. Second, the low-order equations (7a, 7b, 8a, 8b) are solved by iteration.
Third, the final converged solutions of the low-order equations are used in the high-order

eguations. The procedure is repeated until the scalar flux converges in each mesh. This
procedureis shownin Fig. 2.
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Fig. 2. The overall procedure of the ADCMR method



3. Fourier Analysis

Thus far the acceleration equations of the ADCMR method, which is a nonlinear scheme,
have been derived in slab geometry. However, it is yet to be proved theoretically that the
acceleration equations derived actually accelerate the transport equation. The most popular
technique that analyzes iterative schemes is Fourier stability analysis that can apply only to
linear methods. But Cefus and Larsen successfully applied this technique to the analysis of
CMR and PDO iterative schemes through linearization. In this section we analyze
theoretically the ADCMR method by the Cefus and Larsen's approach. To evade the
complexity of ADCMR, a special class of infinite homogeneous medium problems with aflat
source is considered. Therefore, the medium has the simple solution given by f =Q/s ,

Then, the ADCMR equations are linearized around this solution.
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Inserting Eg. (10) into the balance equation of the coarse-mesh (6a) and low-order
equations (7a, 7b, 8a, and 8b) and dropping O(e?®) terms, we find the system of linear
eguations as follows:
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In the equations above, the coarse-mesh index n and fine-mesh index i in constants A, B, C,
and D disappear because the medium under consideration is infinite homogeneous.
Next, the following Fourier ansatz are chosen:
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Substituting the Fourier ansatz Eq. (12) into Eq. (11) gives following equations:
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Eq. (13) can be rewritten in matrix form as follows:
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Therefore, the eigenvalues w s of the iteration operator of ADCMR is obtained by equating



the determinant of Eq. (15) to zero. The spectral radius r is then the largest absolute value of
W'S.
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For the DD discretization scheme, we can find the following properties:
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where X' denotes transpose matrix of X with complex elements conjugated.

4. Numerical Results

4.1 Benchmark Problems

Several benchmark problems are tested. The DD scheme is used for all problems. From the
benchmark results we find that ADCMR is unconditionally stable in not only homogeneous
but heterogeneous medium with opticaly thick mesh size. The acceleration effect is aso
significant.

i) Benchmark | (Reed’ s Problem)

+ Infinite dlab with homogeneous medium

¢ Constant mesh size

+  Vacuum boundary condition

* >

¢ Error criteria(m_ax|1- flf i'|) .10

Vacuum Uniform source Vacuum
Fig. 3. Benchmark problem |
Table 1. Material data of benchmark problem |
Problem c S, h Q Total size

M1 1.0 1.0 1.0 1.0 30.0
M2 1.0 2.0 1.0 1.0 30.0
M3 1.0 1.0 1.0 1.0 60.0
M4 1.0 1.0 2.0 1.0 60.0




Table 2. Number of iterations of benchmark problem |

g ADR ADCMR
(p=1) p=2 p=5 p=10 p=15 p=30
M1 1072 4 5 4 4 3 2
M2 2641 5 5 4 4 4 2
M3 2644 5 5 4 4 4 4
M4 2642 5 5 4 4 4 2
i) Benchmark Il (Khalil’ s Problem)
¢ Uniform isotropic scattering medium for various cross section with c=0.98
¢ Constant source in the left half of the Slab
¢+ h=1cm
* Sp
+  Error criteria: 10
Reflective Uniform source No source Vacuum
0.0 4.0 8.0
Fig. 4. Benchmark problem Il
Table 3. Number of iteration of benchmark problem ||
S, 1.0 2.0 4.0 6.0 10.0 20.0
Sl 197 272 358 504 448 394
ADR(p=1) 5 5 5 6 7 5
p=2 5 5 5 6 7 5
ADCMR p=4 4 4 4 6 6 5
iii) Benchmark I11 (Modified Adams and Martin’ s Problem)
¢ Highly heterogeneous problem
¢ 10 meshes per material
* Sie
+  Error criteria: 10°
Reflective Black Gray Vacuum Scatter 1 Scatter 2 Vacuum
0.0 2.0 3.0 5.0 6.0 8.0

Fig. 5. Benchmark problem 11



Table 4. Material data of benchmark problem 111

Black Gray Scatter 1 Scatter 2

Q 50.0 0.0 1.0 0.0

S, 50.0 5.0 2.0 1.0

C 0.0 0.0 1.0 1.0

Table 5. Number of iterations of benchmark problem 111
— ADCMR

Sl ADR(p=1) 0=2 0=5 0=10
112 6 6 6 6

4.2 Results of Fourier Analysis

In addition to the numerical results, we can confirm that ADCMR is unconditionally stable
in one-dimensiona problems with DD by the results of Fourier analysis, if desired. Fig. 6
shows the spectral radius for several scattering ratios when coarseness p=2. The smaller
scattering ratio gives always better results. Fig. 7 shows that stability increases as coarseness
increases. By comparison to the conventional CMR, ADCMR is more stable and effective.
(Fig. 7and Fig. 8)
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Figure 6. Spectral radius of ADCMR when p=2 for various scattering ratios
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5. Conclusions and Further Works

In this paper, a new nonlinear iteration method based on the angular dependent rebalance
factor concept called the Angular Dependent Coarse-Mesh Rebalance (ADCMR) method was
developed to accelerate one-dimensional discrete ordinates transport equation. The ADCMR
method was successfully tested on several benchmark problems. Also, as a theoretical
anaysis of the ADCMR method, the Fourier analysis through linearization was used. The
results show that ADCMR method is very effective and unconditionally stable in terms of the
gpectral radius and the number of iterations. From the above results we conclude that the
ADCMR method can be used effectively in one-dimensional neutron transport calculations.

Finally the followings are our further work : first, extension to two- and three-dimensional
problems, second, possibility of applications to other transport discretization schemes such as
the Method Of Characteristics (MOC) and the Characteristic Direction Probabilities (CDP)
method.
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