

2002

, ,

150

Abstract

Slow Strain Rate Tests (SSRT) were carried out to investigate the effect of dissolved oxygen on stress corrosion cracking (SCC) susceptibility of 3.5NiCrMoV steels used in discs of low-pressure (LP) steam turbines in electric power generating plants. The influence of dissolved oxygen on cracking in water was studied; for this purpose, specimens were strained to fracture at 150 in water environments with various amounts of dissolved oxygen. The maximum elongation of the turbine steel decreased with increasing dissolved oxygen. Dissolved oxygen significantly affected the SCC susceptibility of turbine steel in water. The increase of the SCC susceptibility of the turbine steel in water. The increase of the SCC susceptibility of the turbine steel in a higher dissolved oxygen environment is due to the non protectiveness of the oxide layer of the turbine steel surface and the increase of corrosion current.

Keyword: SCC, 3.5NiCrMoV steel, turbine steel, dissolved oxygen, SSRT

1.

1969	Hinke	ey Poin	t A				
				가	[1].		
keyway				(Stres	s corrosion	crack: SCC)	
(a _c)							
						50	
keyway						, ,	
	가	100					
		keywa	y, bore				
[2].	1970		EPRI				
		가		, 80		COST 505	
	가		[3].		,		
	가					(Wilson line)	
,	Wilson	line					

(intergranular stress corrosion crack; IGSCC)

(transgranular stress corrosion crack; TGSCC) [4]. 가 NaOH (SCC)

[5,6,7]. [8]. 3.5NiCrMoV

.

2.

 8mm^2 (4 mm × 2 mm) , 25mm 2 1 . Hastelloy C-276 3.78 (autoclave) (slow CERT strain rate technique ; SSRT) . 1 가 가 . , Toshin Kogyo Co, Ltd. SERT-C-5000 . , 가 . 15M -cm 3 . 150 , 10^{-7} s^{-1} 가 (10ppb (300~400ppb),), 가 . 3 2 (purging) ,

1:100 가 2 (purging) .

3.85 , 625(Inconel 625) Alloy 600 (lead wire) . Teflon tube . (reference electrode) Ag/AgCl (counter electrode) , . 1200 grit . 2 가 2 /min 3 , .

-0.7V(vs. Ag/AgCl) (+) 0.1mV/s 1.4V , EG & E Model 263A potentiostat . Ag/AgCl .

3. 3 3 3 150 $10^{-7} s^{-1}$. 2

14% . . 11% 6% 761MPa . 745MPa 714MPa . , 가 . SEM 3 (a) (b) (dimple) . -,

(cup-and-cone) . 4(a) . 가 3(c)

•

(dimple) ,

가 4(b) , (necking) . 3(e) 가

5 가 가 _21mV(vs. Ag/AgCl) 가

_75mV . _505mV . 1460 nA/c㎡ 기· 772 nA/c㎡ 420 nA/c㎡ .

. 3

4.

> 가 가 . . 가 [9].

: M Mⁿ⁺ + ne⁻ : O₂ + 2H₂O + 4e⁻ 4OH⁻ , M Fe, Ni, Cr, Mo, V . . 가 가 , 가 . 가 가

- J. M. Hodge and I. L. Mogford, "U.K Experience of Stress Corrosion Cracking in Steam Turbine Discs", Proc. Inst. Mech. Eng., 193, p.93~109, 1979
- 2) H. Termuehlen, "LP Disc Stress Corrosion Cracking", EPRI Seminar on Cracking

of Low Pressure Steam Turbine Discs, EPRI Palo Alto, CA, April 10, 1980

- M. O. Speidel and J. Denk, and B. Scarlin, "Stress Corrosion Cracking and Corrosion Fatigue of Steam-Turbine Rotor and Blade Materials, COST 505, Commission of the European Communities, Luxembourg, 1991
- M. F. Maday, A. Mignone, and A. Borello, "Stress Corrosion Cracking Behavior of Two Ni-Cr-Mo-V Steels in Caustic Solutions and Pure Oxygenated Water", Corr. 45, pp.273~282, 1989
- 5) A. Mcminn, F. F. Lyle, Jr., and G. R. Leverant, "Stress Corrosion Crack Growth in NiCrMoV Turbine Disc Steels", Corr. 41, pp. 493~502,1985
- Fred F. Lyle, Jr., "Stress Corrosion Cracking Characterization of 3.5 NiCrMoV Low Pressure Turbine Rotor Steels in NaOH and NaCl Solutions", Corr. 39, pp. 120~131, 1983
- R. S. Shalvoy, "The Effect of Potential and Caustic Concentration on the Stress Corrosion Cracking of NiCrMoV Steel at 100 C", Corr. 39, pp. 66~70, 1983
- 8) Fred F. Lyle, Jr., "Stress Corrosion Crack Initiation in Low-Pressure Steam Turbine Disc Steels", Six International Symposium on Environmental Degradation of Materials in Nuclear Power Systems - Water Reactors, pp. 121-128, 1993
- 9) J. Y. Liu and C. C. Su, "Environmental Effects in the Stress Corrosion Cracking of Turbine Disc Steels", Corrosion Science, vol 36, pp. 2017-2028, 1994

Element	ASTM A-470
С	0.24
Si	0.06
Mn	0.30
Р	MAX. 0.010
S	MAX. 0.010
Ni	3.5
Cr	1.5
Мо	0.3
V	0.11

Table 1. Chemical Composition (wt%) of ASTM A-470 Turbine Disc Steel

Fig. 1. Schematic drawing of the slow strain rate tester.

Table 2. Mechanical Properties of an ASTM A-470 Turbine Disc Steel

Properties	ASTM A-470
ultimate tensile strength(MPa)	785.3
yield strength(MPa)	675.1
% elongation in 25mm	16

Fig. 2. SSRT test results in varied environments with the strain rate of 10^{-7} s⁻¹ at 150 .

(a)

(b)

(c)

(d)

(e)

(f)

Fig. 3. Fracture surfaces failure in SSRT test at 150 ; (a) deaerated water - top view,
(b) deaerated water - enlargement showing ductile rupture, (c) intermediated - top view,
(d) intermediated - enlargement showing IGSCC, (e) aerated water - top view, (f) aerated water - enlargement showing IGSCC.

(a)

(b)

Fig. 4. Fracture morphologies tested in varied environments with the strain rate of 10^{-7} s⁻¹ at 150 ; (a) deaerated water, (b) intermediated, (c) aerated water.

Fig. 5. Polarization curves of 3.5NiCrMoV steel in varied environments at 150 : scan rate-0.1mV/s.

Table	3.	The	values	of	corrosion	potential	and	corrosion	current	density	in	varied
enviro	nm	ents										

	Corrosion potential (mV)	Corrosion current density (nA/c㎡)
Aerated water	-21	1460
Intermediate - oxygen water	-75	772
Deaerated water	- 505	420