3.5NiCrMoV

Effect of Dissolved Oxygen for Corrosion Fatigue Behavior in 3.5NiCrMoV Steel

가

Abstract

The corrosion fatigue behaviour of low alloy steel in a simulated low pressure steam turbine environment in pure water at 25 and 150 has been examined as an effect of dissolved oxygen concentration, 8 ppm and 10 ppb respectively. In pure water at 25 crack propagation rates are similar regardless of dissolved oxygen concentration. However, in pure water at 150 crack propagation rate of 8 ppm (DO) concentration is faster than that of 10 ppb(DO) concentration.

1.

			(rote	or) (disk)	
(3.5	NiCrMoV)				
	,	,	가	가	
Lyle[1]				,	

,

2.

	3.5NiCrMoV		ASTM A470	bainitic			
	bainitic						
					3.5NiCrMoV		
	가	CT	(W=25mm)				
(loop)가	INSTRON			•		25	
150			400	kgf,	80 kgf		0.2
,	0.1 Hz			가			
10 ppb	,		8 ppm				

3.

3.5NiCrNoV	가			150
			가	K
3.5NiCrMoV	· .	1	50	가
25	가 8 ppm	K	20~35	MPam ^{1/2}
	. 35 MPam ^{1/2}		,	가
	. 150			
	Κ			

,

Fig. 1. Crack growth rates during fatigue of 3.5NiCrMoV steel in pure water according to dissolved oxygen (a) in pure water at 25 (b)in pure water at 150

2 25

가

Fig.2. Fracture surface in pure water at 250 according to dissolved oxygen

3

150

.

가

4

가 3.5NiCrMoV

Fig.3. Fracture surface in pure water at 150 according to dissolved oxygen

,

Fig.4. Oxidation formation in fracture surface in pure water with 8 ppm (dissolved oxygen)

5.	
1. 150	가 8 ppm
2. 150	,
가 .	가
· · ·	150 (
: 8 ppm)	
3.5NiCrMoV .	

가

REFERENCES

- 1. F.F. Lyle, Jr.: " Stress Corrosion Cracking in Low Pressure Steam Turbines", Corrosion 94 (1994)
- 2. R.Rungta, J.A. Begley, and R.W. Staehle: "Effect of Steam Impurities on Corrosion Fatigue Crack Growth Tates of a Turbine disc steel". Corrosion-NACE (1981) 682