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Abstract 

A model is presented that estimates the amount of radiation hardening under neutron 
irradiation. A reaction rate theory was employed to describe the evolution of microstructure 
in stainless steel leading to radiation hardening. The model assumes that point defect clusters 
(interstitial- and vacancy-type) are the primary sources of hardening and these defects 
eventually act as barriers to the dislocation motion. Small clusters can be created directly 
from the displacement cascade and be developed by diffusive mechanism between mobile 
point defects and clusters. Based on the model, we computed PDC distributions numerically 
and estimated the increase in yield strength. Both types of clusters can give rise to significant 
hardening. The effect of displacement rate has been investigated using the PDC model 
calculation. It could be found that higher displacement rate can lead to more hardening. 

1. Introduction 

One of the most important issues in the nuclear industry is to assess the performance and 
integrity of structural materials in the light water reactors. Changes in microstructure under 
neutron irradiation bring about the mechanical property changes of materials. Among several 
changes, the major concern in this study is radiation hardening, which is generally expressed 
in terms of an increase in yield strength as a function of radiation dose and temperature. A 
number of models have been developed to describe the microstructural evolution under 
irradiation. Empirical models have been proposed to investigate embrittlement of reactor 
pressure-vessel (RPV) steel.[1,2] These models assume that changes in yield strength arise 
from the combined effects of defect clusters and copper precipitates, resulting from 
irradiation. The contribution of each effect to yield stress is correlated to the fast neutron 
fluence and the volume fraction of copper. Based on the reaction rate theory, the theoretical 
model has been developed to describe the evolution of point defect clusters (PDC).[3,4] These 
defects are believed to be major sources of hardening in steels used for light water reactor 
components. 

Development of theoretical models is limited due to the incomplete kinetic data and large 
heat-to-heat variations in microstructural data. These variations are related to such irradiation 
conditions as temperature, flux, and fluence at which the experiment was conducted. Also, 
subtle changes in minor alloying elements and details of thermomechanical treatment affect 



significantly the apparent property changes. Such sensitivity increases the uncertainty in 
determining kinetic parameters depending on alloys, which include diffusion coefficients, 
point defect migration and formation energies, etc. However, theoretical approaches may 
provide an expedient tool in predicting the mechanical property changes of irradiated 
materials, as well as interpreting the experimental data. 

The model below was developed by Stoller to investigate and describe the microstructural 
evolution of ferritic steels under irradiation.[3] This model consists of two parts. First, the 
formation of two types of PDC (interstitial and vacancy) is described mathematically using 
the reaction rate theory. The concentration of PDC and its size are obtained from computation. 
Then, we apply the dislocation barrier model to predict the changes in yield strength of 
irradiated alloys. In this study, the emphasis is placed on the increase in yields strength of 
irradiated stainless steels 304 and 304L. Due to the lack of information on material and 
irradiation parameters of stainless steels, we used published data through literature review. 
The major approximation here is in the use of material parameters of the interstitial migration 
energy. 

2. Model Description 

Low temperature (< 300oC) irradiation of stainless steels produces primarily small 
dislocation loops and defect clusters, which will provide effective barriers to dislocation 
movement, increasing the yield strength.[5] The time-dependent behavior of interstitial and 
vacancy clusters by solid sate diffusion and interaction with sinks can be estimated using the 
PDC model developed by Stoller.[3] Details of models will be explained in this section by 
dividing three parts. 

2.1 Point Defect Kinetics Model 

The point defect concentrations for interstitial (Ci) and vacancy (Cv) are given by: 
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where Pi and Pv are the interstitial and vacancy production rates, Riv is the recombination 
constant, the Di and Dv are the diffusion coefficients for each point defect, and the Sjx are the 
sink strengths for the absorption of point defect x (i or v) by sink type j. The sinks included in 
this model are network dislocations, grain boundaries, and irradiation induced point defect 
clusters.  

The interstitial production rate, Pi in Eq. (1), consists of two factors; Migrating point 
defects from neutron irradiation, and mobile single interstitials emitted from small size (up to 
four) interstitial clusters. Although single interstitials can be generated by emission from 
other sinks, this process is neglected since the interstitial formation energy is so high (about 4 
eV) and irradiation temperature of interest (< 300 oC) is sufficiently low that it is not probable 
that single interstitials can be ejected from higher order interstitial clusters. Generally, the 
point defect production rate is different from displacement per atom (dpa) rate in that the dpa 
value does not take into account the effect of cascade efficiency and in-cascade clustering 
fraction. Therefore, when accounting for theses two factors, the point defect production rates 



should be reduced significantly. Under these assumptions, Pi can be written as; 
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where, Gdpa is the dpa rate, which can be readily obtained from the SPECTER code 
calculation for given neutron spectrum,[6] η is the cascade efficiency, and ficl is the fraction of 
the primary interstitials that participate in the clustering formation. And, the j

iE are the rate 
constants for interstitial emission from a j-interstitial cluster and Cj represents the 
concentration of a j-interstitial cluster. In a similar way, the vacancy production rate, Pv, is 
given as: 
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where e
vC  is the thermal equilibrium vacancy concentration and the Sjv are the vacancy sink 

strengths for the extended defects of type j. Such extended defects can act as sources of point 
defects, as well as sinks for point defects in austenitic steels. In the present model, the sink 
structure includes network dislocation, grain boundary, and PDC. 

The strength of the various sinks in the microstructure varies with irradiation. The sinks 
present before irradiation include network dislocations, precipitates, and interfaces. The 
strength of other sinks such as PDC, dislocation loops, and voids can grow and increase in 
density as irradiation proceeds. It is assumed that two types of sinks, network dislocations 
and grain boundaries, do not change in size and strength with irradiation. On the other hand, 
point defect clusters are regarded as time-dependent sinks which change in size and number 
density during irradiation. The sink strengths of network dislocations for interstitial and 
vacancy are 
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where disρ  is the dislocation density in units of cm-2 and dis
v,iz  are the dislocation bias 

factors for interstitial and vacancy.[7] The grain boundary sink strength is expressed as: 
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where T
oS represents the vacancy sink strength of internal sinks such as voids and 

dislocations and dg is the effective grain diameter. Eq. (6) implies the assumption that the 
total sink strength of grain boundaries for interstitial is not different from that for vacancy. In 
addition to the pre-existing sinks, point defect clusters that develop during irradiation are 
sinks for mobile point defects themselves. If the vacancy cluster is assumed to take the form 
of a microvoid, then its sink strength is given as: 
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where rvcl is the radius of the vacancy cluster and Nvcl its number density in units of #/cm3. 
The interstitial cluster is considered to be a planar defect, or a dislocation loop. The 
interstitial cluster sink strength is, then, expressed in terms of combinatorial numbers j

v,iδ , 



determined by the number of neighboring atomic sites from which a vacancy or interstitial 
can jump onto a j-size interstitial cluster. The sink strength of the interstitial cluster is written 
as: 
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where aL is the lattice constant. The PDC sinks, vcl
v,iS  and icl

v,iS , should be determined by 

coupling with the equations for PDC model described in the next section. Then, the total sink 
strength shown in Eqs. (1) and (2) can be obtained by summation of Eqs. (5) to (8). 

2.2 Point Defect Clustering Model 

The basic mechanism of PDC evolution is nucleation and growth by diffusive reactions 
between PDC and point defects. The evolution of PDC begins with the formation of small 
size clusters created directly by neutron displacement cascades. It is important to note that 
nucleation of PDC takes place in the displacement cascades. These defect clusters will grow 
in size and density as irradiation proceeds. In order to quantify the fraction of point defect 
clustering from displacement cascades, we use results obtained from molecular dynamics 
(MD) simulations.[8,9] There are two important parameters required for the quantification of 
PDC nucleation: the cascade efficiency η and the in-cascade clustering fraction fcl. The 
cascade efficiency η represents the fraction of defects which escape from in-cascade 
recombination, and the in-cascade clustering fraction fcl is the fraction of the remaining 
displacements that forms PDC. Both the cascade efficiency and the clustering fractions 
depend on the energy of the primary knock-on atom (PKA) that brings about the cascade. We 
used several values of η and fcl to fit the calculation results to the observed data on yield 
strength of irradiated SS 304(L). 

The evolution of interstitial cluster population is expressed in terms of a set of time-
dependent ordinary differential equations describing the balance of point defect clusters as 
they are created and absorb or emit vacancies or interstitials, thereby changing size and 
density. The basic assumption in this model is that neutron irradiation creates interstitial 
clusters of up to four interstitials and these can grow to clusters containing up to 500 
interstitials. The rate equations for the description of the interstitial clusters are: 
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where Cm is the concentration of an m-interstitial cluster (atomic fraction), m
iclf  the fraction 

of the defects created by the cascade that are in an m-interstitial cluster, and dpaG the dpa rate 

(dpa/s) produced by neutron irradiation. The rate constants m
v,iβ  are the probability of 

absorption of a mobile interstitial or vacancy into an m-interstitial cluster per unit time. This 
is written as: 
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The rate constants u
iE  are the probabilities of the emission of a single interstitial from a u-

interstitial cluster per unit time, expressed as: 
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where k is the Boltzmann constant, T is the irradiation temperature, and B
uE  the binding 

energy of an interstitial to a u-interstitial cluster. As stated previously, interstitial emission 
from larger clusters (greater than tetra-interstitial) is not taken into account because of the 
relatively higher binding energy of larger clusters. 

The development of vacancy clusters is described by a simple creation and decay model. 
At low temperature (< 300 oC), it is unlikely that vacancy clusters grow and become voids. 
The vacancy clusters are assumed to form in the displacement cascade as microvoid with a 
constant radius and to change in size depending on the balance of the relevant point defect 
fluxes. In this model, we assume that vacancy clusters corresponding to 10 vacancies are 
created directly from the displacement cascade. The rate of change in the radius of a vacancy 
cluster is given as: 
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where rvcl is the size (radius) of a vacancy cluster and vcl
vC  is the vacancy concentration in 

the matrix in equilibrium with the microvoid. The vcl
vC  in Eq. (16) can be expressed as: 
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where γs is the surface energy and Ω the atomic volume. In the fcc lattice, the atomic volume 
is defined as 4/a 3

L . Then, the rate of change in the concentration of vacancy cluster Nvcl is 
given as a function of vacancy cluster production rate Gvcl and its mean lifetime τvcl. 
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The vacancy cluster production rate, Gvcl in Eq. (18), is given by: 
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where, nv is the number of vacancies per cluster created in a displacement cascade. The mean 
lifetime of a vacancy cluster, τvcl in Eq. (18), is calculated by integrating Eq. (16) 
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where r1 is the radius of single vacancy and ri the initial radius of vacancy cluster, which is 
determined by nv. 

These equations for point defect clusters, as well as point defect kinetics, are solved 
simultaneously using the FORTRAN subroutine dlsode, designed to solve stiff-and/or 
nonstiff-type ordinary differential equations.[10] 

2.3 Radiation Hardening due to PDC 

Radiation hardening can be estimated using the dislocation barrier model which describe 
the interaction forces of various defects as they impede the mobile dislocation motion along 
the slip planes of the material. Such models are based on Orowan’s theory for the bending of 
dislocations around precipitates.[11] A change in shear stress ∆τ due to such defects is 
expressed as: 
 

λχ
µ

=τ∆
b

  (21) 

 

where µ is the shear modulus, b is the Burgers vector, χ is a factor inversely proportional to 
the barrier strength, and λ  is the average inter-barrier spacing. The average barrier spacing, 
λ  is determined by the size dn and concentration Nn of barriers and is given by: 
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As a result of the PDC model calculations, we can obtain the size and concentration of 
PDC, required to calculate the average spacing in Eq. (22). The basic idea of Eq. (22) is that 
under an applied stress, the dislocation breaks through the barriers and advances on the slip 
plane until another barrier is encountered. The stress required to move dislocations through 
barriers is related to the strength of the barriers. Its strength is expressed in terms of the 
parameter χ which determines the degree of hardening depending on the types of barrier. 
Although there are differences and uncertainties about the determination of χ, PDC in 
austenitic steels are considered to be weak barriers.[12] The Taylor factor of 3 is used to 
convert the shear stress to a change in the uniaxial yield strength ysσ∆ : 

 

τ∆≅σ∆ 3ys   (23) 
 

The contribution from different types of defects is taken into account by a superposition 
relationship under the assumption that interstitial and vacancy clusters are treated as short-
range barriers. The total hardening due to PDC is given as: 
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where icl
ysσ∆  and vcl

ysσ∆  are the change in yield strength from interstitial and vacancy 

clusters, respectively. 

3. Calculation Results 

There exists a degree of uncertainty in determining kinetic and material parameters 
including interstitial migration energy, point defect clustering fraction, etc. The effect of such 
uncertainty on results was investigated by performing a parametric study in which we varied 
parameters for the given ranges. The kinetic and material parameters were optimized to attain 
reasonable results from PDC calculations by comparing the measured yield strength of 
irradiated stainless steels. The values listed in Table 1 provide the best estimates for austenitic 
steels. Another factor that affects the degree of hardening is the parameter of χ in Eq. (21). 
We referred to Ref. [12] for the determination of barrier strength, which are assigned to 5 and 
4 for interstitial and vacancy clusters, respectively. 

Figure 1 shows the behavior of point defect concentrations at 288oC as a function of 
irradiation time, obtained using parameters given in Table 1. The interstitial concentration  
 
 
Table 1  Kinetic and material parameters for stainless steels 304(L) 
 

Parameters Values

Irradiation temperature (T) 561 K

Vacancy migration energy (Ev
m) 1.4 eV

Vacancy formation energy (Ev
f) 1.5 eV

Effective grain diameter (dg) 0.0001 cm

Interstitial migration energy (Ei
m) 0.65 eV

Interstitial pre-exponential factor 0.0659 cm2/sec
Vacancy pre-exponential factor 0.659 cm2/sec

Dislocation interstitial bias (zi
dis) 1.25

Dislocation vacancy bias (zv
dis) 1

Lattice constant (aL) 3.68 x 10-8 cm
Dislocation density (ρdis) 5 x 1010 cm-2

Vacancy clustering fraction (fvcl) 0.3

Interstitial clustering fraction (ficl
2 : ficl

3 : ficl
4) 0.15 : 0.1 : 0.05

Interstitial cluster binding energy (E2
B : E3

B : E4
B) 0.75 : 1.0 : 1.25 eV

Initial number of vacancies per vacancy cluster (nv) 10

Surface energy (γs) 2.26 - 8.75 x 10-4 T(K)  J/m2

Burgers vector (b) 2.07 x 10-8 cm

Shear modulus (µ) 7.6 x 104 MPa



 

 
Figure 1.  Time dependence of the interstitial (i) and vacancy (v) concentrations at 288oC for 
given dpa rates (A: 1.23x10-9, B: 1.91x10-10 /s) 
 
 
reaches quasi-steady state essentially instantaneously (at about 10-3 seconds) and remains 
mostly constant, for about 105 seconds. The vacancy concentration reaches quasi-steady state 
at about 102 seconds. During this quasi-steady state period between 102 and 105 seconds, the 
point defects are absorbed mainly to pre-existing sinks such as network dislocations and grain 
boundaries. The contribution of developing sinks to point defect transient starts to take effect 
from about 105 seconds on. The formation of irradiation-induced PDC leads to the decrease 
in the point defect concentrations since defect clusters play a significant role in absorbing 
point defects. 

The time dependence of interstitial cluster concentrations is shown in Figure 2, where three 
types of interstitial clusters are included. Concentrations of smaller size clusters are much 
higher than those of larger clusters at an early time. This is because the small interstitial 
clusters (up to tetra-interstitials) are assumed to be created directly by neutron irradiation. 
Although higher-order interstitial clusters appear to be constant as irradiation proceeds, in 
fact they gradually increase with time in a small amount. Figure 3 shows the number density 
of vacancy clusters as a function of time for given dpa rate rates. The vacancy cluster 
concentration reaches a saturation value as irradiation time approaches its lifetime. Lower 
dpa rate gives rise to a longer lifetime of the vacancy clusters. 

The estimated value of increase in yield strength for two different displacement rates is 
plotted in Figure 4. In this calculation, we assume that the vacancy cluster is more effective in 
hindering the dislocation motion rather than the interstitial cluster. It is seen that higher dpa 
rate can lead to more hardening, which is related to the potential effect of neutron flux on 
radiation hardening. That is, the amount of radiation hardening increases with fast neutron 
flux at the same total fluence. 
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Figure 2.  Time dependence of interstitial cluster (5-, 50-, 450-interstitial) concentration at 
288oC for dpa rate of 1.23x10-9 /s. 
 
 

 
Figure 3.  Changes in vacancy cluster concentration as a function of irradiation time at 
288oC for given dpa rates (A: 1.23x10-9, B: 1.91x10-10 /s) 
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Figure 4.  Estimated increase in the yield strength of stainless steel 304 at 288oC for given 
dpa rates (A: 1.23x10-9, B: 1.91x10-10 /s), resulting from the PDC model calculation. 
 

4. Discussion 

The time-dependent model has been used to describe the contribution of interstitial and 
vacancy clusters to radiation hardening in stainless steels. It appears that the cluster 
contribution to radiation hardening from this model is overestimated since the model does not 
include other types of microstructure except point defect clusters. However, it is reasonable to 
conclude that these clusters are responsible for hardening in that the identities of 
microstructure evolved from irradiation are not still clear. 

Although there is some uncertainty in determining the kinetic and material parameters for 
stainless steels and the strength of point defect clusters as barriers to dislocation motion, we 
established a theoretical and mathematical way for the estimation of radiation hardening. This 
mathematical model can be readily applicable to other alloys, such as ferritic steels, for 
predicting embrittlement. Some modification can be made to this model by including the 
formation of copper-rich precipitates in RPV steels. Among various parameters listed in 
Table 1, parameters concerning the clustering formation are closely related to the primary 
damage production by irradiation. Molecular dynamics calculation will be performed to 
simulate the primary damage. Results will provide the reliable input to the PDC model 
calculation. 
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