Performance Characteristics of Flow Circulation System in HANARO Flow Simulation Facility

Abstract

The HANARO, multi-purpose research reactor, 30 MW_{th} open-tank-in-pool type, has been under normal operation since its initial criticality in February, 1995. Many experiments should be safely performed to activate the utilization of the HANARO. For this purpose, a HANARO flow simulation facility with similar flow characteristics to the HANARO has been installed to verify the structural integrities and to predict the performances for those experimental facilities prior to loading in the HANARO. This facility is composed of a half-core structure assembly, a flow circulation system and a support system. The flow circulation system should supply the core flow and the core bypass flow to the half-core structure assembly loaded flow orifices instead of nuclear fuels to simulate a similar flow characteristic to the HANARO. In this paper, we describe the performance characteristics for the circulation system. As results, it was confirmed through the field performance test that the flow circulation system supply the core flow and the core bypass flow to be satisfied the design requirements. 1.

2.2

1/2 3

,

3.0

가 14

4.0

4.1

 25%
 7↓
 ,

 5
 .

 7↓
 , 410 kg/s
 36 mWg
 ,
 35

 mWg
 420 kg/s
 .
 .
 .
 .

 mWg)
 .
 .
 .
 .
 .

가 . 가 가 (75 °C)가 가 . 가가 2 30 7 . 가 50 가 . 가 50 가

5 °C 4 °C .

4.2

가 ,

가 가

• 가 가 가 3 , . . 1 . (Qc) (Qb) (Qt) 8 , 70 , 1/2 2 30 • , 9 , . 가 . . 0.65% 4 0.59% . 가 .

5.0

가 1) 7년 35 mWg 420 kg/s (410 kg/s @ 35 mWg)

.

2)

- Chul Gyo Seo, et., al.,"Pin Power Reconstruction of HANARO Fuel Assembly via Gamma Scanning and Tomography Method", Reactor", J. of KNS, Vol. 33, No. 1, p. 25, (2001).
- [2] Y.C.Park, et., al., "Technical Specification for Fabrication of Flow Circulation System in HANARO Flow Simulation Facility", KAERI/TR-2290/2002 (2002).
- [3] Y.C.Park, et., al, "Technical Specification for Fabrication of Support System in HANARO Flow Simulation Facility", KAERI/TR-2299/2002 (2002).
- [4] Cho, M. S., et., al., "Fabrication & Installation of Irradiation Equipment Design Verification Test Facility", KAERI/TR-1633/2000 (2000).
- [5] Kim, H. I., et., al., "Flow Characteristics of Korea Multi -Purpose Research Reactor", Proceedings of the 7th International Meeting on Nuclear Reactor Thermal-Hydraulics (1995).
- [6] Y.C.Park, et., al, "Flow Analysis of HANARO Flow Simulated Test Facility", Proceedings of the fifth JSME-KSME Fluid Engineering Conference, Nagoya, Japan, (2002).

Description			HANARO	HANARO Flow Simulation Facility	IEDVT
Core flow	Hexagona I tube	Quantity	23	13	1-2
		Design flow	19.6		
		Sub total	450	255	39.2
	Circular tube	Quantity	16	7	-
		Design flow	12.7		
		Sub total	203	89	-
	Gab flow		50	25	12
	Total		703	369	51.2
Core bypass flow			77	41	5.8
Grand total		780	410	57	

Table 1 Flow rate of HANARO flow simulation facility

Table 2 Abnormal conditions under circulation pump automatic operation`

Abnormal conditions	Alarm	
Over current	Pump fail	
Water level LL and core flow low or high	Piping fail	
Water level LLL	Water level LLL	

Table 3 Results of circulation pump automatic operation test

Causa	Simulation	Results	
Cause	Sinuation	Alarm	Pump
Over current	Set value change	Pump fail	Stop
Water level LL and core flow low or high	Set value change	Piping fail	Stop
Water level LLL	Set value change	Water level LLL	Stop

Table 4 Absolut torrences of core and core bypass flow variations

Description	Average flow (kg/s)	Absolute Torr, (kg/s)	Torr. rate (%)
Core flow	374.1	2.4	0.7
Core bypass flow	41.8	0.2	0.6

Figure 1 Configuration of HANARO core

Figure 2 Configuration of 1/2 Core

Figure 3 P&ID of flow circulation system

Figure 4 Field control panel

Figure 5 Flow-head characteristics curve of flow circulation pump

Figure 6 Vibration of flow circulation pump

Figure 7 Variations of motor bearing temperatures and winding temperature

Figure 8 Variations of core and core bypass flow as per opening of bypass valve

Figure 9 Results of continuity test for flow circulation system