2003춘계학술발표회논문집 한국원자력학회

모의 사용후핵연료 용해용액 중 커 회수

Recovery of Tritium from Simulated Spent Pressurized Water (PWR) Reactor Fuel Dissolver Solutions

이창헌, 김정석, 이성경, 서무열, 최광순, 박영재, 김원호 한국원자력연구소 대전시 유성구 덕진동 150. 사서함 105. nchlee1@kaeri.re.kr

요약

사용후핵연료의 화학특성을 연구하기 위하여 사용후핵연료에 미량 함유되어 있는 ³H의 회수에 관하여 기술하였다. 삼중수소수 표준액을 첨가한 모의 사용후핵연료 용해용액을 사용하였으며 방사성 폐액의 방출을 억제하고 분석자의 방사선 피폭을 줄이기 위하여 하나의 시료로부터 ¹⁴C과 ³H을 순차적으로 회수, 정량하도록 하였다. 사용후핵연료 용해과정에서 방출되는 ¹⁴CO₂는 Hot Cell 안에서 1.5 M NaOH에 포집시켜 회수하였다. 용해과정에서 휘발되어 ¹⁴C과 ³H 정량에 영향을 미칠수 있는 ¹²⁹2는 Ag-silica gel 흡착제를 사용하여 제거하였다. ³H는 ¹⁴CO₂를 회수한 후 증류시켜 회수하였으며, NaOH를 넣어 악틴족 원소들과 핵분열생성물 원소들을 침전시킴으로서 RuO4 등 공존원소들에 의한 오염을 방지하였다. 액체섬광계수법으로 ³H를 정량하였으며 평균 회수율은 97.9% 그리고 상대표준편차는 0.9%이었다.

Abstract

To chemically characterize spent pressurized water reactor (PWR) fuels, recovery of ³H from simulated spent PWR fuel dissolver solutions was described in detail. Considering the effective management of radioactive wastes generated through the whole analytical process and the radiological safety for analysts, ¹⁴C and ³H were sequentially recovered and determined from single sample. ¹⁴CO₂, which was evolved during dissolution of the spent PWR fuels with nitric acid, was trapped as a carbonate salt in an aliquot of 1.5 M NaOH. ¹²⁹I₂, a volatile beta emitter, which can interfere with quantitative analysis of ¹⁴C and ³H by liquid scintillation counting, was removed using silver impregnated silica gel absorbent. After recovering ¹⁴C, ³H as HTO was selectively recovered by distillation prior to beta counting of ³H. Ruthenium, which could be volatilized as RuO₄ in nitric acid medium during distillation, was precipitated along with co-existing actinides and fission product elements by adding NaOH pellets in the dissolver solution. Its recovery yield was 97.9% with a relative standard deviation of 0.9% (n=3).

1. 서 론

사용후핵연료에 미량 함유되어 있는 핵분열생성물의 화학분석은 사용후핵연료의 특성을 규명하고 연소거동을 예측하는데 필요한 기본적인 자료를 제공할 수 있다.

삼중수소 (3 H 또는 T)는 14 N + n \rightarrow 12 C + 3 H과 같은 고속 중성자 반응을 통하여 성층권에서 자연적으로 생성되며 핵무기 실험, 원자력발전소 가동 그리고 사용후핵연료 재처리 과정을 통하여 인공적으로 생성된다 10 . 핵연료 연소과정에서 3 H는 ternary fission과 불순물로 함유되어 있는 6 Li 및 14 N의 중성자 방사화에 의해 생성되며 2 , Sellafield의 BNFL은 1995년 원자력발전 과정에서 2.7 \times 10 15 Bq을 바다로 그리고 5.90 \times 10 14 Bq을 대기권으로 방출시켰다고 발표한 바 있다 3 .

사용후핵연료에 HT와 같은 화학종으로 함유되어 있는 ³H는 핵연료 내에서 생성된 후 많은 양이 지르칼로이 피복관으로 이동하며, 연소도가 증가함에 따라 피복관으로 이동하는 ³H의 양이 증가하 고 있어서⁴⁾ 취화로 인해 피복관이 파손될 가능성이 커진다는 연구결과를 뒷받침하고 있다.

³H는 낮은 베타 에너지 (E_{max} = 18.6 keV) 방출체이기 때문에 액체섬광계수법으로 분석할 때 분석에 영향을 미칠 수 있는 대부분의 방사성 핵종을 계측 전에 반드시 제거해야 한다. 일반적으로 물, 토양 등과 같은 환경시료에 함유되어 있는 ³H에 대한 분석결과는 많이 보고되고 있으나⁵⁾ 실제사용후핵연료와 피복관에 함유되어 있는 ³H의 분석 사례는 많이 보고되어 있지 않다.

지르칼로이 또는 이와 유사한 고체물질에 미량 함유되어 있는 ³H는 전기 전극로의 탄소관에서 시편을 녹일 때 방출되는 ³H를 운반기체 (6% 수소/헬륨)와 함께 500~600 ˚C를 유지하는 CuO관을 통과시켜 삼중수소수 (HTO)로 산화시킨 후 약 6 ˚C의 냉각수에 포집시켜 회수할 수 있다⁶⁾. 이 방법은 회수과정을 자동으로 통제할 수 있고 신속한 장점이 있으나 전극로를 Hot Cell 또는 장갑상자 안에 설치해야 하는 어려움이 있다.

공기 또는 산소 분위기에서 사용후핵연료를 490~500 ℃에서 가열시켜 U₃O₈으로 산화시키는 voloxidation 공정에서 ³H는 1% 이하의 HT와 함께 대부분 (99.8%) HTO로 방출되며 핵연료에 남아있는 ³H는 질산 용해과정에서 HTO로 산화되어 용액에 남아있음이 확인되었다^{7.8)}. 한편, JAERI가 발표한 사용후핵연료 용해에 관한 연구결과에 의하면 질산 용해용액에 함유되어 있는 ³H 농도의 약 1% 가 HT로 용해과정에서 방출되지만 대부분 HTO로 용해용액에 안정하게 남아있었다⁴⁾. 따라서고가의 장비를 사용하여 고체 시편으로부터 직접 ³H를 회수하는 것보다 사용후핵연료 용해 용액으로부터 직접 ³H를 회수하는 것이 더 경제적임을 알 수 있다. 그러나 사용후핵연료 용해용액에는 액체섬광계수법으로 ³H를 정량할 때 간섭할 수 있는 많은 악틴족 원소들과 핵분열생성물들이 함유되어 있다. 따라서 ³H의 양을 계측하기 전에 반드시 정량적으로 분리, 회수해야 하며, 분리방법으로 음이온 및 양이온 교환수지를 사용하는 방법과 증류법이 알려져 있다^{9,10)}.

본 연구에서는 질산 매질의 사용후핵연료 용해용액에서 ³H를 증류법으로 회수할 때 HTO와 함께 RuO₄가 회수될 수 있음을 고려하여 모의 사용후핵연료 용해용액을 알칼리성으로 만들어 공존 성분들을 침전시킨 후 HTO를 증류시켜 회수할 수 있는 방법에 관하여 조사하였다. 또한 회수한 증류분을 유도결합 플라스마 질량분석기 (ICP-MS)로 분석하여 공존 성분들에 의한 오염도를 조사하였으며 확립된 회수조건에서 회수율을 측정하고 신뢰도를 평가하였다.

2. 실험

2.1. 측정기기 및 증류기

³H를 정량하기 위하여 Packard (Tri-Carb 2500, U.S.A.)사의 액체섬광계수기를 사용하였다. ¹⁴C 회수실험을 완료한 후 HTO를 회수하기 위하여 Fig. 1과 같은 유리재질의 증류기를 제작하여 사용하였다.

2.2. 시약

Amersham Lab사의 삼중수소화된 HTO 표준용액 (1225.4 Bq/mL, 1992. 1.1)을 증류수로 희석하여 사용하였다 (HTO 희석 표준용액: 665 Bq/mL, 2002. 12. 12). 실험에서 사용된 모든 시약은 분석 시약급으로서 정제하지 않고 사용하였다. 이차 증류수로 탈염수를 Milli-Q plus Ultra Pure Water System (Millipore)에 통과시켜 사용하였다. 섬광제로는 Packard사의 Ultima Gold AB를 사용하였다.

2.3. 모의 사용후핵연료 용해용액 제조

10년 냉각시킨 35,000 MWd/MtU 연소도의 사용후핵연료 용해용액과 화학조성이 유사한 비방사성 모의용액을 제조하기 위하여 Spex사의 유도결합 플라스마 원자방출분광분석 (ICP-AES) 검정용표준용액 (1,000 mg/L)과 U₃O₈ (NBL Certified Reference Material 129)의 질산 용해용액을 Table 1과 같은 농도가 되도록 혼합하여 제조하였다.

적당한 양의 ICP-AES 표준용액을 취하여 250 mL 비커에 넣고 적외선 등으로 약하게 가열시키면서 약 20 mL가 될 때까지 농축시켜 ICP-AES 표준 혼합용액을 제조하였다. U₃O₈ 2.002 g 취하여 별도의 100 mL 용량의 유리 비커에 넣고 소량의 8 M HNO₃으로 용해시킨 후 적외선 등으로 가열시켜 완전히 증발, 건조시켰다. 사용후핵연료에 함유되어 있는 ¹⁴C 회수실험에서 CO₂ 방출물질로서 첨가한 CaCO₃의 양을 고려하여 250 mL의 비커에 CaCO₃ 5 g을 넣고 7 M HNO₃ 20 mL를 서서히 넣어 용해시켰다. 이 CaCO₃ 용해용액을 증발, 건조된 우라늄염이 들어 있는 비커로 옮겨 용해시킨 다음 100 mL 용량 플라스크로 옮겼다. 또한 6 M HNO₃ 매질로 만들어 놓은 Pd, Ru, Rh, Sb 및 Sn 혼합용액을 일정량 취하여 넣고 20 mL로 농축된 ICP-AES 표준 혼합용액과 합한 후 7 M HNO₃로 채웠다.

2.4. 증류법에 의한 ³H 회수

모의 사용후핵연료 용해용액 0.5 mL (10 mg의 사용후핵연료 해당량), AgNO₃ 용액 0.0824 mL (Ag: 0.824 μ g) KlO₃ 용액 0.1 mL (I: 2.5 μ g), ⁹⁹Tc 용액 1 mL (63 Bq), HTO 희석 표준용액 1 mL (665 Bq)와 증류수 2.3 mL를 증류용 둥근 바닥 플라스크에 넣고 증류장치를 구성하였다. 증류분을 모으기 위하여 7 M HNO₃ 0.03 mL가 들어 있는 20 mL 용량의 플라스크를 증류분 수집기 용출구

아래에 설치하였다. 냉각 콘덴서 위에 증류수를 1 mL 넣어 증류분 수집기 용출구를 증류수로 채웠다. 둥근 바닥 플라스크에 비동석 3알과 NaOH 펠렛 4 개를 넣은 다음 (첨가된 질산에 대응하는 NaOH 양은 약 168 mg) 열판기를 5.0으로 조절하고 냉각수의 온도가 14 ℃를 유지되도록 하였다. 증류가 완결되어 증류분 수집기 용출구 끝에 물방울이 모이지 않으면 실온까지 냉각시킨다. 증류수 5 mL를 둥근 바닥 플라스크에 넣어 건조물을 잘 용해시킨 후 위와 같은 증류를 2회 더 실시하여 ³H를 완전히 회수하도록 한다. 마지막으로 증류수를 1 mL씩 냉각 콘덴서를 통하여 수집 플라스크로 모은 다음 증류수로 20 mL 되게 하였다. 증류분에 함유되어 있는 ³H의 양은 액체섬광계수법으로 그리고 공존하는 금속이온들에 의한 오염 여부는 ICP-MS로 조사하였다.

2.5. 액체섬광계수법에 의한 ^위 의 정량

폴리 에틸렌 재질의 액체섬광계수용 용기에 섬광제 15 mL를 넣고 바탕액, 표준액 및 증류분을 각각 1 mL씩 넣었다. 본 실험에서 사용한 표준액은 HTO 희석 표준용액 0.5 mL와 7 M HNO₃ 0.015 mL를 증류수로 10 mL 되게 만든 용액이며, 바탕액은 7 M HNO₃ 0.015 mL를 증류수로 10 mL 되게 만든 용액이다. 섬광제와 수용액이 잘 섞이도록 한 후 2~18.6 keV 범위에서 30분간 각각 계측하였다.

3. 결과 및 고찰

3.1. ³H 회수과정 및 정량 간섭 핵종 제거

사용후핵연료에 함유되어 있는 ¹⁴C과 ³H는 각각 ¹⁴CO와 HT로 존재하며^{4,11)} 사용후핵연료를 용해시킬 때 ¹⁴CO는 공기 중의 산소와 반응하여 대부분 ¹⁴CO₂로¹²⁻¹⁴⁾ 방출되고 ³H는 HTO로 산화되어용해용액 내에 안정하게 남아 있는 것으로 알려져 있다⁴⁾. 따라서 본 연구에서는 Hot Cell 안에서사용후핵연료 용해 과정에서 방출되는 ¹⁴CO₂를 먼저 회수한 후 일정량의 용해용액을 인근의 장갑상자로 옮겨 ³H를 회수하도록 분석과정을 설정하여 하나의 시료로부터 ¹⁴C과 ³H을 순차적으로 회수, 정량하도록 함으로써 방사성 폐액의 방출을 억제하고 분석자의 방사선 피폭을 줄이도록 하였다. 또한 Hot Cell 안에서 원격으로 ¹⁴CO₂ 회수장치를 구성하고 실험조작을 쉽게 할 수 있도록 ¹⁴CO₂ 회수장치를 Fig. 2와 같이 단순화하였다. 용해과정에서 방출되는 ¹⁴CO₂를 정량적으로 알칼리 용액에 포집시키기 위하여 헬륨과 같은 운반기체 주입구를 이 장치에 설치하는 대신에 질산과반응할 때 운반기체로 CO₂를 방출할 수 있는 CaCO₃를 모의 사용후핵연료 용해용액에 첨가하도록하였다. 사용후핵연료 용해 및 ¹⁴CO₂ 회수과정에서 함께 방출되는 불활성의 ⁸⁵Kr은 화학반응 없이 방출되며 ¹²⁹는 Ag 침윤 silica gel에 흡착시켜 제거시킬 수 있다. 따라서 ³H의 정량에 영향을 미치는 휘발성 핵종은 ³H를 회수하기 전에 모두 제거시킬 수 있다.

3.2. ³H 회수 거동

 3 H는 14 CO $_{2}$ 를 회수한 후 14 Fig 1과 같은 증류장치를 사용하여 회수하였다. 질산 매질의 사용후핵

연료 용해용액을 90 ℃ 이상에서 가열시킬 때 RuO₄와 같은 휘발성 산화물이 함께 회수되는 것을 방지하기 위하여 NaOH를 넣어 악틴족 원소 및 공존하는 핵분열생성물 원소들과 함께 침전시켰다.

HTO 희석 표준용액을 첨가하지 않은 모의 사용후핵연료 용해용액을 대상으로 "2.4. ³H 회수 방법"에 따라 증류분을 얻은 후 ICP-MS로 공존 원소들에 의한 오염도를 조사하여 Table 2에 나타내었다. 비교를 위하여 모의 사용후핵연료 용해용액 대신 증류수를 대상으로 동일한 방법으로 오염도를 조사하고 "Blank"로 그 결과를 나타내었다. 전체적으로 "Test"의 결과가 "Blank"의 결과보다작은 것으로 미루어 볼 때 모의 사용후핵연료의 금속성분들에 의한 오염은 발생하지 않는 것으로 판단된다. 증류분에서 모의 사용후핵연료 용액에 주성분으로 첨가한 우라늄이 극미량 검출되었으나 실제 ³H와 함께 증류된 것인지 또는 외부로부터의 오염에 의한 것인지 확인되지 않았다. 또한모의 사용후핵연료 용해용액에 ⁹⁹Tc (63 Bq)을 첨가한 후 동일한 방법으로 증류하고 액체성광계수법으로 ⁹⁹Tc의 오염정도를 조사한 결과 증류분에서 ⁹⁹Tc을 전혀 발견할 수 없었다. 이러한 실험결과들로부터 ³H 정량에 영향을 미칠 수 있는 대부분의 방사성 핵종들로부터 ³H를 선택적으로 회수할 수 있다고 판단한다. 그러나 실제 사용후핵연료를 대상으로 실험할 때 공존하는 핵종들에 의한오염이 확인된다면 혼합 이온교환수지에 의한 탈염과정을 추가로 도입하면 보다 선택적인 회수가 가능할 것이다.

³H를 완전히 증류하기 위하여 과도하게 열을 가해 증발, 건조시킬 경우 고열로 증기화된 금속염에 의해 오염이 발생할 수 있다. 따라서 용해용액을 완전히 증발, 건조시키지 않고 수 차례 증류수를 첨가하여 증류시킴으로써 정량적인 회수가 가능하도록 하였다. Fig. 3에 나타낸 바와 같이 초기 증류에도 95% 이상의 ³H가 회수되었으므로 본 연구에서는 ³H를 3회 증류하여 회수하고자 하였다.

3.3. ³H 회수율 측정 및 신뢰도 평가

HTO 희석 표준용액 1 mL (665 Bq)를 첨가한 모의 사용후핵연료 용해용액 3개를 앞에서 확립된절차에 따라 실험하고 증류분에 함유되어 있는 ³H의 양을 액체섬광계수법으로 측정하여 회수율을 결정하였다. Table 3에 나타낸 바와 같이 평균 회수율은 97.9% 그리고 상대표준편차는 0.9%이었다.

결 론

자체 제작한 유리 재질의 증류장치를 사용하여 모의 사용후핵연료 용해용액에 함유되어 있는 ³H의 회수거동과 회수율을 조사하였다. 액체섬광계수법으로 ³H를 정량할 때 영향을 미칠 수 있는 공존 핵분열생성물 원소들에 의한 오염은 없었다. 증류분에서 모의 사용후핵연료 용액에 주성분으로 첨가한 우라늄이 극미량 검출되었으나 실제 ³H와 함께 증류된 것인지 또는 외부 오염에 의한 것인지 확인되지 않았다. 실제 사용후핵연료를 대상으로 분석하였을 때 증류과정에서 우라늄에 의한 오염이 확인된다면 혼합 이온교환수지에 의한 탈염과정을 추가할 것이다. 모의 사용후핵연료 내 ³H 회수실험을 3회 실시하고 측정한 평균 회수율과 상대표준편차는 본 연구에서 확립한 ³H 회

참고문헌

- [1] UNSCEAR, Sources and Effects of Ionizing Radiation, United Nations Publications, Vienna, Austria,
- [2] G. F. Knoll, Radiation, Determination and Measurement, Wiley, Inc, New York, 1979.
- (3) BNFL Annual report on radioactive discharges and monitoring of the environment, 1995 vol. 1, British Nuclear Fuels, Risely, Cheshire, UK, 1995.
- (4) Dissolution studies of spent nuclear fuels, JAERI-M 91-010, 1991.
- [5] M. A. Gautier, E. S. Gladney and D. R. Perrin, "Quality assurance for Health and Environmental Chemistry: 1989" Los Alamos National Laboratory Report LA-11995-MS, 1990.
- (6) PNL-ALO-479 Technical Report, 1989.
- (7) J. A. Stone and D. R. Johnson, DP-MS-78-7, 1978.
- (8) D. R. Johnson and J. A. Stone, DP-MS-77-77, 1978.
- (9) E. W. Baumann and K. W. MacMurdo, CONF 771031-1, 1977.
- [10] P. E. Warwick, I. W. Croudace, A. G. Howard, Anal. Chim. Acta, 382, 225, 1999.
- [11] G. L. Haag, J. W. Nehis, Jr. and G. C. Young, "Carbon-14 immobilization via the Ba(OH)2 · 8 H₂O process", In Proc. 17th DOE Nuclear Air Cleaning Conference, CONF-828033, U.S. DOE., pp 431-453, 1983.
- [12] W. Davis, Jr., Carbon-14 Production in nuclear reactors, ORNL/NUREG/TM-12, Oak Ridge National Laboratory, Oak Ridge, TN, 1977.
- [13] M. J. Kabat, "Monitoring and removal of gaseous carbon-14 species", In Proc. 15th DOE Nuclear air Cleaning Conference, CONF-780819, National Technical Information Service, Springfield, 1979.
- [14] C. O. Kunz, "14C release at light water reactors", In Proc. 17th DOE Nuclear air Cleaning Conference, CONF-820833, National Technical Information Service, Springfield, VA, pp 414-430, 1983.

Table 1. Chemical composition of simulated spent PWR fuel dissolver solution

Element	Spent fuel, µg/g	Element µg/100 mL SIM soln.		
¹⁾ HT	1,242.8 kBq	665.6 Bq		
Ва	1,835	3,670		
Cd	119.8	240		
Се	2,505	5,000		
Cs	2,511	5,000		
Eu	141.6	300		
Gd	136.9	300		
La	1,284	2,700		
Мо	3,528	7,200		
Nd	4,257	8,500		
Pd	1,505	3,000		
Pr	1,177	2,400		
Rb	368.8	800		
Rh	486.0	1,000		
Ru	2,330	4,500		
Sb	100	100		
Sn	200	200		
Se	59.3	120		
Sm	906.9	1,810		
Sr	806.6	1,610		
¹⁾ Tc	809.2	63 Bq		
Те	515.5	1,030		
Y	476.7	1,000		
Zr	3,805	7,610		
U	0.9539 g	2.002 g		
CaCO ₃	2.5 g	5 g		
¹⁾ Ag	82.4	0.824		
¹⁾ l	249.3	2.5		

^{1):} Element added to a round bottom flask containing 0.5 mL of simulated spent fuel dissolver solution prior to tritium recovery experiment

Table 2. Analytical result of the recovered distillate by ICP-MS

Metal element	Blank, ng/mL	Test, ng/mL	
Ва	12.2	3.7	
Cd	-	-	
Се	0.1	_	
Cs	0.3	0.1	
Eu	4.1	_	
Gd	-	_	
La	1.3		
Mo	0.9		
Nd	0.1 –		
Pd			
Pr			
Rb	12.9 0.1		
Rh	-	_	
Ru	-	_	
Se			
Sm	-	_	
Sr	0.4	_	
Те	1.1	_	
Y	0.8		
Zr	0.5	_	
Sb	0.1 –		
Sn	0.1	-	
U	0.1	2.3	

Table 3. Recovery of ³H from simulated spent PWR fuel dissolver solutions by distillation

Test No	Added, Bq	Found, Bq	Recovery, %	Average, %	RSD, %
H-1	665	650.5	97.8		
H-2	665	657.6	98.8	97.9	0.9
H-3	665	643.0	97.1		

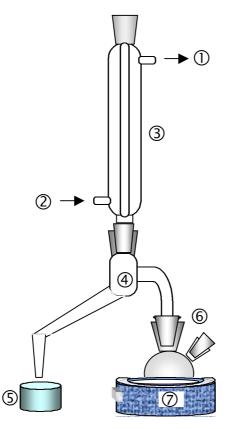


Fig. 1. Apparatus for ³H recovery.

- ① Cooling water outlet
- ② Cooling water inlet
- 3 Cooling condenser
- Distiller
- S Receiver
- ® Round bottom flask
- ② Heating mantle

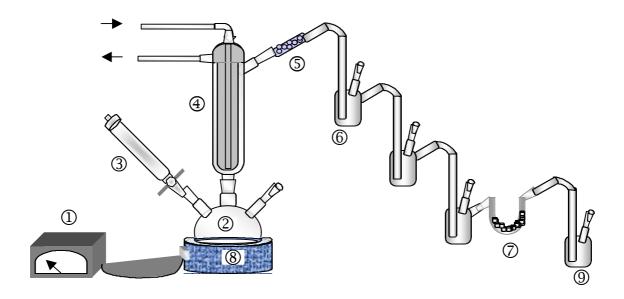


Fig. 2. Apparatus for ¹⁴C recovery.

- ① Voltage controller ② 3-neck dissolution flask
- ③ Tube for introduction of HNO₃(1+1) ④ Reflux condenser
- © I₂(I-129) Trap © Trap with 1.5M-NaOH 25mL
 Ø Molecular sieve13X ® Heating mantle
- 9 Trap with 1.5 M-NaOH 50mL